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Fig. 1. With DendroMap, users can explore large-scale image datasets by overviewing the overall distributions and zooming down
into hierarchies of image groups at multiple levels of abstraction. In this example, we visualize images of the CIFAR-100 dataset by
hierarchically clustering the image representations obtained from a ResNet50 image classification model. (B) Treemap View displays
these clusters of images organized as a hierarchical structure by adapting Treemaps. By clicking on a cluster, a user can interactively
(C) Zoom into that image group, revealing subgroups that replace and fill the available space with animation. The user clicked on a
cluster for organism images, which creates distinct subgroups of fish, insects, fruits, and flowers. With (A) Sidebar View, the user can
dynamically adjust the number of clusters to be displayed and inspect the class-level statistics.

Abstract— In this paper, we present DendroMap, a novel approach to interactively exploring large-scale image datasets for machine
learning (ML). ML practitioners often explore image datasets by generating a grid of images or projecting high-dimensional represen-
tations of images into 2-D using dimensionality reduction techniques (e.g., t-SNE). However, neither approach effectively scales to
large datasets because images are ineffectively organized and interactions are insufficiently supported. To address these challenges,
we develop DendroMap by adapting Treemaps, a well-known visualization technique. DendroMap effectively organizes images by
extracting hierarchical cluster structures from high-dimensional representations of images. It enables users to make sense of the
overall distributions of datasets and interactively zoom into specific areas of interests at multiple levels of abstraction. Our case studies
with widely-used image datasets for deep learning demonstrate that users can discover insights about datasets and trained models by
examining the diversity of images, identifying underperforming subgroups, and analyzing classification errors. We conducted a user
study that evaluates the effectiveness of DendroMap in grouping and searching tasks by comparing it with a gridified version of t-SNE
and found that participants preferred DendroMap. DendroMap is available at https://div-lab.github.io/dendromap/.

Index Terms—Visualization for machine learning, image data, treemaps, visual analytics, data-centric AI, error analysis

1 INTRODUCTION

The machine learning (ML) community is increasingly aware of the
importance of understanding datasets. There is a growing interest in
Data-Centric AI, as opposed to the model-centric approach [39, 45,
62]. A deep understanding of the datasets can help inform design
decisions for building ML models efficiently and appropriately. It
motivates important decisions such as collecting more data, changing
data labeling policy, debiasing models, and more.

• The authors are with Oregon State University. E-mail: {bertuccd, hamidmd,
anandy, ruangroc, tabatase, peremeli, minsuk.kahng}@oregonstate.edu.

This paper has been accepted for the IEEE VIS 2022 Conference and will be
published in the IEEE Transactions on Visualization and Computer Graphics.

While images are used extensively in deep learning, fundamental
challenges exist in exploring image datasets because they lack attributes
like those found in tabular data. A commonly-used approach is to use
dimensionality reduction (DR) techniques like t-SNE [57] over mul-
tivariate features extracted from the datasets [47]. To enable users
to easily see the contents of the images, each data point in the pro-
jected space is often replaced with its corresponding image (like in
Fig. 2B) [52]. However, for large datasets, there could be overlaps
between images, and inefficient use of space (i.e., a lot of white space)
makes the size of each image too small for users to inspect.

To scale up DR methods for large image datasets, data points can
be re-positioned into a grid such that no images overlap and the grid
fills the entire screen (Fig. 2C) [23, 30, 46]. It is inspired by a common
approach to visualizing image collections—displaying images as a
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Random Grid t-SNE t-SNE-Grid DendroMapA B C D
Fig. 2. Commonly used approaches to visualizing image datasets for ML include generating a grid of images (A); projecting the images onto 2-D
displays using techniques like t-SNE (B); and using a combination of these two approaches (C). However, they do not scale well to large datasets
because images are ineffectively organized and interactions are insufficiently supported. We present DendroMap (D) which effectively organizes
image datasets using a modified interactive treemap algorithm.

grid [4,69]. This is also the case for ML image datasets. Many tutorials
for image classification begin by displaying a sample of images as
a grid [54]. While the combination of the grid and t-SNE methods
effectively use 2-D space, it is still severely limited by the size of the
image datasets. Adding interactions may help, but the use of semantic
zooming is not straightforward for the gridified version of t-SNE. This
is because optimization algorithms were applied that distort the original
space [28, 46], which means the before-zoom and after-zoom versions
may present very different sets of images.

In this paper, we present DendroMap, a novel interactive visualiza-
tion for exploring large-scale image datasets by adapting treemaps, a
well-known visualization technique. DendroMap effectively organizes
images using hierarchical clustering algorithms and displays the hier-
archical structure with an interactive treemap. A set of image clusters
provides an overview of a dataset, and users can interactively zoom into
the clusters to investigate sub-clusters in the hierarchy. Fig. 1 illustrates
an example. It initially displays eight clusters, each showing a sample
of images whose size is proportional to the total number of images in
that cluster. Unlike traditional treemaps, the number of image clusters
showing can be dynamically changed by the user to customize the level
of abstraction. Furthermore, clicking on a cluster will zoom (Fig. 1C)
into that cluster to reveal and fill the space with sub-clusters.
DendroMap aims to support a wide range of analytics tasks for ML

practitioners. This includes bias and error analysis at the instance and
subgroup levels, which have been identified as important in the litera-
ture [2, 10, 25]. To build highly accurate and less biased models, it is
crucial to have datasets containing a diverse set of images. DendroMap
enable users to categorize the types of images present in the datasets
and estimate their distributions. Furthermore, DendroMap users can
identify underperforming subgroups for error analysis [42, 63, 70].

Contributions. The contributions of this paper are as follows:
• DendroMap, a novel interactive visualization system for ex-

ploring large-scale image datasets used in ML. DendroMap
adapts an interactive zoomable treemap and supports the infor-
mation seeking mantra “overview first, zoom and filter, then
details-on-demand” [51]. Combined with the sidebar as a part of
multiple coordinated views, ML pracitioners can perform a wide
range of tasks for data-centric analysis (e.g., error analysis, bias
discovery).

• An adapted treemap algorithm for hierarchical dendrogram
structures of images, which allows users to dynamically specify
the number of clusters to visualize, enabling exploration at multi-
ple levels of granularity. Images are systematically sampled to fill
the space for each cluster, providing an overview of the datasets.

• Live demo on the web1 with available code2 and use cases for

1The live demo of DendroMap is available at https://div-lab.github.
io/dendromap/.

2The code is available at https://github.com/div-lab/dendromap.

DendroMap demonstrating users’ dataset exploration, bias discov-
ery, and error analyses.

• A quantitative user study designed to compare DendroMapwith
a gridified version of t-SNE, a space-filling technique used by ML
practitioners. Participants performed a wide range of grouping
tasks and preferred DendroMap over the baseline.

2 RELATED WORK

2.1 Visualization for Machine Learning
Visualization has helped ML practitioners perform a variety of analytics
tasks such as: exploring datasets, analyzing performance results, inter-
preting and explaining model internals, building models, monitoring
training progress, and debugging models [25, 68].

Many existing visualization tools for ML support the tasks of ana-
lyzing performance results and exploring datasets at multiple levels of
abstraction, ranging from individual instances to entire classes. While
ML practitioners often only use summary metrics (e.g., accuracy) or
class-level statistics, visualization researchers have argued the impor-
tance of instance-level analysis. Early works include ModelTracker [2],
Squares [48], and Facets-Dive [60, 61]. These tools represent each
instance as a small square using the unit visualization technique [43],
enabling users to see individual instances in the context of aggregated
information. This can work particularly well for image datasets as each
square can be replaced with a thumbnail of the actual image content.

While instance-level analysis has benefits, the scale of datasets urges
researchers to develop ways to slice and filter datasets, resulting in
subgroup-level analysis [21, 25, 29]. This allows users to specify data
subsets based on attributes and perform more fine-grained analysis than
at the class-level. However, image data creates a fundamental challenge
in supporting such analysis because there are no attributes beyond class
labels. Therefore, group structures are often created with algorithmic
approaches. A common approach is to use a DR technique like t-
SNE [57] or UMAP [36], which are often applied to high-dimensional
representations obtained from neuron activations [47]. We propose an
alternative approach to capturing group structures.

ML researchers have stressed the importance of datasets by coining
terms like Data-Centric AI and MLOps [39]. Our work aligns with this
trend to ensure that ML datasets are less biased, more fair and inclusive,
and contain fewer errors. A recently developed tool named Know Your
Data [53] aligns with this goal, providing statistics based on attributes
obtained from external APIs (e.g., face recognition, object detection).
Our work instead focuses on making sense of raw image datasets by
relying on human perception.

2.2 Image Browsing
Zahálka and Worring [69] presented a comprehensive overview of mul-
timedia visualization methods (primarily of images) in their survey.
They categorized existing techniques into five types: basic grid, simi-
larity space, similarity-based, spreadsheet, and thread-based. The three
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methods commonly used by ML practitioners described in Sect. 1 and
Fig. 2 (i.e., random grid, t-SNE, and a grid version of t-SNE) belong to
the “basic grid,” “similarity space,” and “similarity-based” categories,
respectively. Our proposed treemap-based method can also be placed
in the “similarity-based” category.

The idea of using treemaps for image browsing was proposed in
PhotoMesa [4]. It consists of two variations of the treemap algorithms:
the ordered treemap algorithm ensures the order of images in each
treemap block will match the order in file structures (e.g., by times-
tamp); and the quantum treemap ensures that the widths and heights of
the generated rectangles are integer multiples of a given elemental size.
Unlike the data commonly used in treemaps, ML datasets have different
properties: each dataset has a set of classes, and the images within each
class have no order. Because there is no existing hierarchical structure,
we extract one using agglomerative clustering algorithms.

An important task in analyzing images or multimedia data is cat-
egorizing or exploratory searching. The key difference from tabu-
lar datasets is that image datasets are not annotated with structured
attributes—images are unstructured. Many common data operations
like filtering, grouping, and sorting cannot be easily applied. If we
consider low-level tasks by Amar et al. [1], only a few of the 10 tasks
can be applied to images [69]. Thus, an important challenge in inter-
active visualization of image data is automatic extraction of semantic
information, interactive exploration of categories, or both [55, 65, 70].

2.3 Similarity-based Visualization Methods

As we discussed in the previous subsection, our proposed work can be
considered as a similarity-based approach. We briefly describe both the
similarity-space and similarity-based approaches in the ML context.

The t-SNE algorithm is probably the most popular among ML re-
searchers. It is often used to visualize cluster structures learned by deep
learning models [11, 47, 57, 58]. While t-SNE often plots each data
point as a small circle in a 2-D space, the nature of images provides us
with the opportunity to directly plot a small thumbnail instead of a dot.
This enables users to see the image contents without interacting with
each circle mark (e.g., clicking, hovering). For example, Embedding
Projector [52] displays MNIST images in t-SNE plots. However, as the
number of images grows, images overlap, making it almost impossible
to see them in high-density areas (see Fig. 2B).

Researchers and practitioners have devised methods to address the
issue of overlapping images. The images can be rearranged in a grid
either by selecting a sample of images among many in each grid or redis-
tributing all images into all the grid spaces in screen using optimization
algorithms [28]. Although we have not found research papers to gridify
t-SNE or UMAP, there exist several implementations [30,33,46], includ-
ing one by Karpathy [30]. This type of gridifying algorithm has been
used in several visual analytics tools for ML for image data [12, 59, 71].

Redistributing data points or images into a rectangular grid has also
been studied in non-ML context, such as IsoMatch [17] and rectangular
packing [19]. Removing overlaps can be more intelligent by balancing
the full use of screen space and intentionally leaving some white-space
to reveal cluster structures [22].

2.4 Hierarchical Exploration of Data

To begin our review of hierarchical exploration, we provide a brief back-
ground about clustering algorithms [38]. Unlike the k-means algorithm
which partitions data points into a fixed number of groups, the hierar-
chical clustering algorithms iteratively divide data space into smaller
space (i.e., divisive) or merge from smaller groups into larger groups
(i.e., agglomerative). We use the latter to form a hierarchy (called a
dendrogram), since divisive does not produce high-quality results for
high-dimensional data and is computationally expensive for large data.
The agglomerative ones align more closely with useful characteristics
of t-SNE: focusing on similar pairs to find cluster structures.

Existing work on visualizing dendrograms include Hierarchical Clus-
tering Explorer (HCE) [49], Stacked Trees which interactively merge
parts of the dendrogram [6], and Yang et al. for steering and revising
the dendrograms [66]. All these used node-link diagrams to display

dendrograms; however, they are less desirable for image datasets, be-
cause the dendrograms require all instances to be positioned along a
single line, which means the size of images would become very small
if we want to display images in place of the leaves of the dendrogram
tree. A space-filling technique like treemaps can resolve this issue.

Hierarchical data exploration has been studied extensively in text
domains. Text data is unstructured, so automatic extraction of clusters is
important too like images. HierarchicalTopics [15] extracts hierarchical
structures of latent topics and enables users to explore and revise them.
TopicLens [32] allows users to zoom into certain areas of projected two-
dimensional spaces. Marcilio et al. extracts hierarchical structures from
high-dimensional representations of deep learning data [35]. Nmap
represents data as treemap-style representations, similar to ours [16].
It adjusts initial positions of data items obtained from 2-D projection
algorithms by iteratively creating treemap nodes using their modified
slicing algorithm. We instead create tree structures using well-known
clustering algorithms. Another difference is that our work targeting
image data displays image thumbnails within treemap nodes.

3 DESIGN GOALS

To help ML practitioners explore large-scale image datasets, we adapt
treemaps with the following design goals:

1. Overview of Data Distributions. We aim to assist users in get-
ting an overview of datasets as a beginning step for their analysis
of datasets. This includes helping them answer questions like
what kinds of images mostly exist in their datasets, whether they
are diverse enough [27] or biased towards any properties [9].

2. Exploring at Multiple Levels of Abstraction. We aim to design
our visualization to provide users with abilities to interactively
adjust the level of abstraction. While treemaps are effective at
supporting abstract and elaborate interactions [67], we adapt the
original treemap techniques by considering unique properties of
the dendrogram structure and the domain of ML for images.

3. Instance-level Exploration. As images do not contain attributes,
it is important for users to see the individual image contents
while exploring datasets. We aim to effectively organize image
thumbnails to help users find and inspect individual data points
while they navigate over the tree structure.

4. Subgroup-level Analysis for ML. Both the literature in multime-
dia analytics and visual analytics for ML point out the importance
of identifying subgroups from datasets [25, 42, 69]. This can be
useful for performing a wide range of analytic tasks in ML, such
as error analysis and bias discovery [10, 63].

4 DendroMap CONSTRUCTION AND INTERACTIONS

This section describes how a dendrogram can be constructed from an
image dataset, how DendroMap visualizes the dendrogram, and how
supported interactions help achieve our design goals.

4.1 Dendrogram Tree Construction

To create groups of images for hierarchical exploration, we use the
well-known hierarchical agglomerative clustering algorithm [38].

The clustering algorithm takes as input high-dimensional representa-
tions of images. There are several ways to obtain such representations,
such as by extracting high-dimensional embeddings from pre-trained
or fine-tuned models, low-dimensional encodings using Autoencoders,
or raw image pixels [24, 25, 29, 47]. In our user study in Sect. 6, for the
CIFAR-10 dataset, we extracted 1024 dimensional embedding vector
representations from the second-to-last hidden (fully-connected) layer
in pretrained ResNet50 models that we fine-tuned on CIFAR-10.

Given this input, each image vector is initialized as its own cluster
to start, then the most similar image clusters are merged together using
Ward linkage with the Euclidean distance metric to form more balanced
trees [38]. The agglomerative merging process repeats until the final
two clusters merge into one cluster containing all the images in the
dataset. The output of the algorithm forms a special tree structure,
called dendrogram, with leaf nodes corresponding to data instances.

3



Portion of Dendrogram Tree

show 3 clusters
The are visible on top 
with the parent nodes behind.
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Portion rendered in a TreemapFull Dendrogram Tree

Fig. 3. To scalably visualize the dendrogram tree structure created from agglomerative clustering methods, users can dynamically specify the number
of clusters to be rendered in DendroMap. In this example, a portion of the dendrogram is rendered in the treemap view to show three image clusters.
Increasing the number of clusters to be shown will result in creating more partitions across the treemap with smooth animations.

Available Space Partition Padding

Fig. 4. The slice-dice layout takes the available space given by the parent
node vP and partitions the space into for its two children vLC and vRC. To
reveal the vP’s hierarchy, padding is added to the children boxes.

4.2 DendroMap Visualization
DendroMap visualizes dendrogram structures using a modified treemap
algorithm. It traverses the dendrogram and renders each cluster node
as a grid of images using the available rectangular space.

Treemap Layout. The dendrogram resembles a binary tree, and all
non-leaf nodes have only two child nodes. This allows DendroMap to
adapt the traditional slice-dice treemap layout [50]. Normally, slice-
dice creates undesirable aspect ratios when laying out many rectangles
per level [5]; however, this issue does not occur in ours because the
dendrogram will not have more than two children per node, always
resulting in just one partition of space.

We modify the slice-dice layout to display a grid of fixed sized im-
ages on top and to include padding (to highlight hierarchical structures).
To demonstrate one iteration of the modified layout, consider a node
vP that has two children vLC and vRC with 6 and 4 images, respectively.
The goal is to fill a 100 by 90 pixel available space depicted in Fig. 4.
The algorithm works as follows:

1. Dice if the available space from the parent vP is a horizontal
rectangle and slice if it is vertical. In Fig. 4, vP’s width wP is
100 pixels and height hP is 90 pixels, so dicing is chosen.

2. Compute the ratio to partition the space. When dicing, the
partition ratio is calculated by ratio := NLC/NP, where Ni repre-
sents the number of images in vi. The left and right areas of the
partition correspond to each child, vLC and vRC. In Fig. 4, the
dice partition ratio is computed as (6/10) = 0.6. Meaning 60%
of the space is for the vLC and 40% is for vRC.

3. Adjust the partition to fit images. Based on the image size,
compute the maximum amount of the images that can fit across
entire parent’s width (or height if slicing) by f it := bwP/wimagec,
where wP is the width of the available space for vP and wimage is
the width of each image. Then the actual partition dimensions
can be calculated as b f it× ratioc pixels, resulting in a partition
that fits images without cutting them off.

4. Add padding to show hierarchies. After laying out the vLC and
vRC and assigning them their new dimensions, a fixed padding is
added to reveal the parent cluster vP behind it (like in Fig. 4). We
set a fixed padding of 10 pixels in our implementation. Color can
encode the remaining height of tree under that node [7].

Adjusting the number of clusters. Traversing the entire dendro-
gram quickly fills the available screen space, making it hard to display

many images. Thanks to the dendrogram’s binary tree structure, each
iteration of the DendroMap algorithm only lays out two children (one
partition), which allows us to render specific number of clusters (i.e.,
k set by users). By traversing the tree breadth-first and counting the k
clusters created so far, the algorithm can stop and show those k clusters.
For example in Fig. 3 the dendrogram traversal stops to only render
three clusters showing in the treemap.

Organizing images within the clusters. A useful property of den-
drograms is that the leaf nodes (i.e., images) are positioned along a line
based on the structure of the constructed tree in a way that there is no
edge crossing. We use this positional information to organize the list
of images for each cluster node. As seen in the Fig. 3 dendrogram, the
similar images merge together starting from the bottom, and at each
successive merge, they still maintain the position of the leaves in the
dendrogram from left to right. The end result is the root node cluster’s
images are in the same position as the leaf nodes in the dendrogram,
which lets similar looking images clump up together and nearby images
in a cluster be likely more similar than images located far within the
cluster. For example, in Fig. 1 on the right, insect images taken over
white background are clustered together with a large node. When there
exist a larger number of images to display than the amount of available
space, we systematically sample images from the cluster. Specifically,
we compute the period by calculating the total number of images in the
cluster over the maximum number of images we can possibly show and
round down to the nearest integer. We then sample images in the cluster
with that period of frequency. For example, if 30 images can be shown
in a given space and the cluster has 150 images, we compute the period
to sample by b150/30c = 5 and iterate over the cluster {x1, ...,x150}.
The end result is an image every 5 iteration to determine 30 images
{x1,x6,x11, ...,x146}. This enables us to show representative samples
of a cluster and avoid hiding images that occur later on. We display the
total number of images at the top of each cluster node, as well as their
classification accuracy if available.

Zooming interactions. For further navigation of the clusters,
DendroMap supports zooming. When a cluster node is clicked,
DendroMap animates to zoom into the new cluster, which enlarges
the selected cluster to fit into the entire space, and creates a set of
subclusters within the selected cluster. Our implementation basically
follows Bostock’s zoomable treemap implementation [8]. In addition,
by taking up the entire space with the zoom-in, more images can be
shown with more specific hierarchies, leading to more in-depth explo-
ration. This process corresponds to rendering a downstream portion of
the dendrogram. At any point, by clicking back on the parent cluster,
the reverse process of zooming-out goes back up the tree to reveal the
top-level view again. These zooming interactions allow users to quickly
explore large image collections at multiple levels of granularity.

4.3 Coordinated Views with the Sidebar

We developed a system for DendroMap by designing coordinated views
consisting of the main treemap view and the sidebar. The sidebar
contains rendering settings for the treemap display, a class table for
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Fig. 5. The class table summarizes class-level statistics of images
present in the selected cluster in the treemap view. The user can sort
and search for classes, and hover over each entry to quickly locate
accurate or error filled clusters highlighted directly on the DendroMap.

class-level error analysis, and a panel for details for a selected image.
DendroMap Settings. The sidebar contains two sliders to change

the overview level: one controls the number of clusters visible and
the other controls the image size. By default, DendroMap shows eight
clusters of medium-sized images to balance the level of detail and
overview such that many images can be shown while still separated
into distinguishable groups. These sliders allow users to easily change
the overview level based on their exploration needs.

When a dataset comes with predictions from a trained model, the
sidebar provides two options to highlight misclassified images. One
toggle highlights these images using a red border and the other toggle
puts the images into focus by making the others translucent. Visually
emphasizing misclassified images makes it easier for users to find
groups of images that the model consistently misclassifies.

Class Table. The class table is visible if model predictions are
present. The table contains information for additional error analysis at
the class level. The table updates based on the parent cluster’s images
(i.e., the root or previously selected cluster; by default, all images).
Each row of the table corresponds to a specific class in the dataset (e.g.,
cat). The next two columns of the table displays the counts of images
with a true or predicted class label matching the class specified.

The last three columns of the table provide useful metrics for class-
level error analysis: the prediction accuracy (i.e., how often the true and
predicted classes matched that row’s class), the false negative rate (i.e,
how often the true class matched that row’s class but the predicted class
was different), and the false positive rate (i.e., how often the predicted
class matched that row’s class but the true class was different). As
shown in Fig. 5, each rate is encoded with the opacity of a colored dot.

By hovering over one of these entries in the table, the treemap view
highlights the images used to determine that metric by making the other
images translucent. This way users can use the class table in tandem
with the treemap to isolate and find areas of high error or high accuracy.

Image Details. A user can click on an image in DendroMap to
see detailed information: larger view of the image, true class label,
predicted class label if it has one, and similar images. The similar
images are determined based on distances in the high-dimensional
space, which can be used for counterfactual analysis [13, 18].

4.4 Implementation Details
The DendroMap system was built using Svelte3, a reactive JavaScript
framework that has been increasingly used in the visualization commu-
nity. The main component, the treemap view, is implemented primarily
with D3.js4 to create SVG elements and to transition the elements
for natural animation. The complimentary component, the sidebar, is
entirely implemented in Svelte, and uses Svelte store functionality
to communicate between the treemap. The dendrogram structure is
created from the SciPy5 hierarchical clustering implementation with
Ward linkage (recommended as default). The output dendrogram is
exported as a nested JSON object to be rendered as a treemap on the
client side.

3Svelte JavaScript Framework: https://svelte.dev/
4D3 JavaScript Library: https://d3js.org/
5SciPy Python Library: https://scipy.org

5 USE CASES

In this section, we describe how DendroMap can be used in practice to
explore and analyze image datasets through three usage scenarios.

5.1 Examining Bias in Datasets
Consider Priya, a data scientist who lives in the Southeast region of
Asia and is evaluating whether ImageNet can be used to train an image
classification model that she can deploy in her country. After she
loads the DendroMap interface, Priya begins to click around to “zoom”
into different portions of the dataset. She first clicks on the rectangle
containing the approximately half of the dataset and discovers a cluster
containing everyday objects. She notices a cluster of taxi cabs and
hovers over the class name “taxicab” in the sidebar’s class table to put
just the taxicab photos in focus while the rest become faded. She notices
that most are black or yellow, but she knows from personal experience
that many taxis are multicolored in her country, so she makes a note
to supplement the “taxicab” class with some of those images. Priya
“zooms out” by clicking on the outermost rectangle and decides to visit
another cluster, this one featuring many images of people interacting
with a variety of everyday objects, such as “violin” and “sunscreen”.
However, as she clicks on several images to get a better look at each
one, she notices that the images tend to include people with lighter
skin tones. She makes another note to supplement the dataset with
images of people with darker skin tones interacting with the objects
corresponding to each of the classes listed in the class table. Given
these notes, Priya now would like to train models using this dataset and
evaluate them by a set of slices which she made notes (e.g., skin tone),
to make sure the models perform consistently over these slices.

5.2 Identifying Underperforming Subgroups
Consider Dave, a ML engineer who is using the CIFAR-100 dataset to
evaluate a trained image classification model. He opens DendroMap
and sees the default view of eight rectangles or clusters. As Dave in-
spects the interface, he notices that the group of images with the lowest
accuracy score (57 percent) consists mostly of human faces. He sees
no obvious pattern at this level of overview in the hierarchical structure,
so he clicks on another rectangle to get a closer look. From the class
table in the sidebar, he observes that a majority of the images in this
group were predicted to be “woman” or “girl”, but most were incorrect.
Dave thinks perhaps his classification model has trouble determining
which of those two labels is correct. He navigates back up one level
by clicking on the outermost rectangle. He selects a different cluster
and this time he observes that a majority of the images are predicted
as “man” or “boy”, but with similar proportions of incorrect guesses
(as shown in Fig. 6). From these two insights, Dave hypothesizes that
his model can distinguish male and female faces, but has difficulty
determining whether the person is a child or adult. Then he decides
to collect additional training data of human faces for four different
categories: adult female, adult male, boys, and girls.

5.3 Analyzing Classification Errors
Consider Anna, a ML practitioner who works in a team developing
computer vision applications. While she trained a model, she noticed
her model consistently had a harder time correctly predicting images
from the artifact-related classes so she decided to analyze her model
for these classes from the ImageNet dataset, such as “umbrella” and
“frying pan”. She opens DendroMap and toggles the “outline misclassi-
fied” and “focus misclassified” switches to spotlight the misclassified
images, outlined in red, while the others fade. She notices that the red
outlined images appear to be scattered without much of a pattern, so
she gradually increases the number of clusters until DendroMap splits
the images into subgroups of higher or lower accuracy. She stops when
it reaches 18 clusters because she notices distinct subgroups of images
with high accuracy (over 90 percent). Most of these subgroups focus on
particular classes, such as “racket” or “potter’s wheel”. Anna wants to
investigate the cause of clusters with much lower prediction accuracy,
so she continually clicks on the next visible cluster with the lowest
accuracy. She notices a pattern as she keeps drilling down towards the
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A Dave zooms into a low 58.09% accuracy  with mostly human facesgroup

B By looking through the clusters and 
Image Details, Dave finds that the 
model can distinguish male vs. female. 

C However, looking into a few , 
he finds that the model has difficulty 
determining age.

subgroups

True Class
man

boy
Predicted Class

Fig. 6. In our case study, ML practitioner, Dave, investigates the specific classes that his model struggles with using DendroMap.

leaf nodes: the accuracy rate decreases as the images become more clut-
tered. She clicks on several misclassified images to inspect their true
and predicted class labels, and she discovers that the predicted labels
are not necessarily inaccurate—it is that the true label and predicted
labels are classifying the entire image based on only a portion of it.
For example, she clicks on an image of a couple of people sitting on a
bench on a sunny day. The true class label for this image is “sunglasses”
because one person is wearing sunglasses, whereas the predicted label
for the image is “park bench” because the two people are sitting on a
bench. These errors can be critical for her team’s applications, so Anna
decides to consider object detection models which can locate multiple
objects within a single image, instead of image classification models.

6 USER STUDY

To evaluate the effectiveness of DendroMap for exploring large-
scale machine learning datasets, we conducted a user study compar-
ing DendroMap and a baseline visualization technique for images,
t-SNE-Grid, a gridified version of t-SNE.

6.1 Baseline: t-SNE-Grid
We compare DendroMap with a gridified version of t-SNE, which we
call t-SNE-Grid. It re-adjusts the positions obtained from the t-SNE
algorithm [57], by filling the available rectangular grid space with the
images for effectively using screen space [30].

This process works by first taking the image representations from the
dataset and reducing them down to their two-dimensional embeddings
using t-SNE (like Fig. 7A). Then, to fill the space, two dimensional
grid points are evenly laid out over the space of image embeddings
(like Fig. 7B). Finally, each grid point is assigned the closest image

Images to 2-DA B COverlay Grids Assign Grids

Fig. 7. Steps to generate t-SNE-Grid: From t-SNE embeddings (in A),
we first overlay grid points on top of the embeddings (in B; 10× 10 in
this case). Then in C, we assign each grid with an image that has the
smallest distance.

embedding and the corresponding image is displayed on top (like
Fig. 7C). The result is a grid of images with the structure from t-SNE.

There may be overlap with what is considered the closest image em-
bedding to each grid point, so to achieve a result where the sum of grid
assignment distances is minimized, the Jonker-Volgenant algorithm is
used to get the optimal assignments [28]. The optimal grid assignments
work by phrasing the problem as a linear assignment problem. For
this user study, to enhance the t-SNE-Grid exploration further, we
implemented a one-level zoom that recomputes the grid with a smaller
number of images based on where the user clicks in t-SNE-Grid. In
particular, the top-k closest to the click are recomputed with the Jonker-
Volgenant algorithm to display a smaller and more focused grid of
images to the user, where k is chosen based on the number of grids to
show in the zoomed-in view. For example, to show a 5×5 grid, k is set
as 25 to take the 25 closest points and gridify them. We open-sourced
the grid assignment implementation and published it as a library6.

6.2 Study Setup
6.2.1 Participants.
We recruited 20 participants by using the departmental student mailing
lists. Their average age was 26. Five were female and 15 were male.
Six were undergraduate and 14 were graduate students. Their degree
programs included computer science, robotics, and AI. We recruited
only those who have taken at least one AI or ML course. Every par-
ticipant attended the study in-person and we had one participant per
session. Each participant was compensated with a $20 gift card.

6.2.2 Protocol.
We used a within-subject design such that each participant evaluated
both DendroMap and t-SNE-Grid. To let participants work with dif-
ferent images for the two visualizations, we created two variations
of the CIFAR-100 dataset (Artifact and Organism subsets which we
describe in detail in Sect. 6.2.3). From the two visualizations and two
datasets, we created four conditions. Each participant was assigned to
one of these four conditions to ensure there was no bias in the order in
which a participant used (shown in Table 1).

Every participant completed two sets of tasks, one for each
visualization-dataset combination of their respective condition. For
each phase, a participant was given a brief tutorial of the visualization,
then they were asked to complete seven tasks while thinking aloud.
After each phase, the participant filled out a post-questionnaire form.
All participants used the same computer setup with a 32-inch monitor.

6https://www.npmjs.com/package/grid-assign-js
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6.2.3 Dataset and Models.
We used the CIFAR-10 and CIFAR-100 datasets [34] for the study. The
CIFAR-10 dataset has 10 classes, each containing 6,000 images (5,000
from training set and 1,000 from test set), while the CIFAR-100 dataset
has 100 classes, each containing 600 images.

We fine-tuned the ResNet50 [20] architecture that was pretrained
on the ImageNet dataset provided by TensorFlow7. The CIFAR-10
and CIFAR-100 images were upsampled to fit the input shape of the
ResNet50 model (i.e., 224× 224× 3). After extracting the image
features from the models, we used Average Pooling, followed by three
Dense layers (i.e., their sizes are 1024, 512, and the number of classes,
respectively). The model was fine-tuned for 20 epochs, achieving a test
set accuracy of 92.8% on CIFAR-10 and 76.3% on CIFAR-100. For
use in the DendroMap and t-SNE-Grid algorithms, we represented the
images in each dataset as high-dimensional vectors from embeddings of
one of the last hidden layers in each respective model (i.e., for CIFAR-
10, the second-to-last hidden layer, which is 1024-dimensional; for
CIFAR-100, the last hidden layer, which is 512-dimensional8). The
DendroMap and t-SNE-Grid use the same representations as input to
their respective algorithms.

We divided the classes of CIFAR-100 into two sets–“Artifacts” and
“Organisms”–in order to have two distinct sets of classes for the within-
subject design. This helps ensure that results from the first interface
only minimally affect those from the second interface. Each set consists
of 40 classes (i.e., 4 superclasses, each consisting of 10 classes) [34].
The Artifact set contains classes like chair, television, and bottles, while
the Organisms set contains classes like tiger, crocodile, and trout.

6.2.4 Tasks
The participants completed seven tasks which can be divided into two
broad categories: grouping and searching. The grouping tasks involved
identifying groups of images based on semantically similar properties;
the searching tasks involved searching for images based on specific
properties. Table 2 provides a summarized description of the tasks.
• In Tasks 1 and 2, participants were asked to categorize images into

3-4 groups based on semantically similar properties. Task 1 was
designed to evaluate how users make sense of and categorize images
across many (i.e., 40) classes whereas Task 2 focuses on how users
make sense of images within a single class. The common objectives
of these two tasks include analyzing diversity or any potential bias
present in the distribution of the data as well as getting an overview
of the data.

• In Task 3, we asked participants to find two large groups, using
images from a single class, that have very high classification accuracy
and have specific properties. This task was designed to evaluate the
scope of subgroup-level error analysis.

• Task 4 is about examining the distribution of images for a single class.
This task was designed based on the “characterize distribution” task
discussed by Amar et al. [1]. The participants were asked to estimate
the approximate proportions of four groups determined based on an
attribute (e.g., color of objects).
7https://www.tensorflow.org/api_docs/python/tf/keras/

applications/resnet50/ResNet50
8For CIFAR-10, we chose the layer farther from the output layer, because

we wanted to extract lower-level concepts that are less specific to classes for
people to explore different types of images within each class [3].

# Phase 1 Phase 2

Visualization Dataset Visualization Dataset

1 t-SNE-Grid Artifact DendroMap Organism
2 DendroMap Artifact t-SNE-Grid Organism
3 t-SNE-Grid Organism DendroMap Artifact
4 DendroMap Organism t-SNE-Grid Artifact

Table 1. Four conditions for counterbalancing the orders of two interfaces
in our within-subject design

# Task Description

1. Categorizing images into groups across 40 classes
2. Categorizing images into groups for a single class
3. Identifying groups of images with high classification accuracy

within a single class
4. Estimating the image count distribution over multiple groups

within a single class
5. Searching for an image with a given text description
6. Searching for an image with a given visual description
7. Searching for an anomalous image with an incorrect class label

Table 2. Seven tasks designed to evaluate several grouping and search-
ing tasks used in ML analysis

• The following two tasks are conventional searching tasks. In Task 5,
participants were asked to find an image that matches a provided text
description. In Task 6, participants were asked to find the image that
matches the one on the task sheet.

• Lastly, Task 7 was designed to find probable anomalies. Participants
were asked to find potential labeling errors among the misclassified
images for a single class [40, 64].

Note that every participant worked with the same task list for both
DendroMap and t-SNE-Grid, but used a different dataset for each of
the visualizations.

6.2.5 Interface Setup
For fairer comparison, the sidebar component from DendroMap was
added to the t-SNE-Grid visualization. Additionally, to confirm that
certain sidebar components are not overused over the main visualization,
the class table, class filtering, and similar images components were
removed from the sidebar for both DendroMap and t-SNE-Grid.

6.3 Results
The setup of our user study gives us the scope to analyze data from a
multitude of perspectives.

6.3.1 Evaluation of task completion time
Our first set of analyses focused on task completion time. During the
study, we recorded the time a participant took to complete each task.
We conducted Wilcoxon signed-rank tests, and there is no significant
difference between the average time taken by our participants with
t-SNE-Grid and that with DendroMap for each of all the tasks.

6.3.2 Evaluation of task responses
We evaluated the responses to the seven tasks using statistical methods.

Task 1. We instructed our participants to identify four groups such
that an image can be assigned to only one group (mutually exclusive)
and most images present in the interface can be assigned to one of the
groups (collectively exhaustive). To evaluate the quality of groups made
by the participants, we conducted three analyses. First, to measure the
collectively exhaustive property of the groups, we counted the number
of classes covered by at least one of the four groups and divided that
number by the total number of classes present in the dataset (i.e., 40).
The reason why we counted the number of “classes” instead of “images”
is the number of classes can approximate the number of images because
each class has an equal number of images. In an ideal scenario, the
value would be 1.0. If only a portion of images in a class belongs
to a group, we count it as half. With DendroMap, the average value
over all participants are higher with a value of 0.82, compared to 0.73
with t-SNE-Grid. A one-sided Wilcoxon signed-rank test indicates
that its p-value is 0.089. This suggests that on average, participants
were able to maintain the “collectively exhaustive” property more with
DendroMap than t-SNE-Grid, but we note that the level of significance
is not high. Next, to assess the mutual exclusiveness of the groups made
by a participant, we counted the number of classes that belong to two
or more groups. In an ideal scenario, the value is zero because there
is no overlap between the groups. We calculated the average value
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to be 0.07 for t-SNE-Grid and 0.13 for DendroMap. The results of
the same test indicate that on average participants were able to create
more “mutually exclusive” groups with t-SNE-Grid than DendroMap
(p-value = 0.062). Lastly, we calculated the entropy score of the
probability distribution of the four groups to check how much the
groups are equally distributed. We found the average entropy score of
DendroMap to be similar to that of t-SNE-Grid (i.e., 1.37 vs. 1.34).

Task 2. Like Task 1, the participants were asked to identify mutually
exclusive and collectively exhaustive groups. The main difference for
Task 2 is that they worked with images for only one class. To evaluate
the quality of groups identified by the participants, we conducted the
same three analyses as for Task 1. However, for Task 2, instead of
counting the number of classes, we labeled a 10% sample of individual
images. In our first analysis of the collectively exhaustive property,
the average values for t-SNE-Grid and DendroMap are almost the
same with the values of 0.67 and 0.66 respectively. This also happened
with the mutual exclusiveness analysis (i.e., 0.10 and 0.13). Our final
analysis of the entropy scores is also no exception (i.e., 1.41 and 1.36).

Task 3. This task is also about grouping, but the participants were
asked to find two large groups of images with high classification ac-
curacy. We conducted two analyses. First, we assessed the average
accuracy of the two groups. To find the accuracy of each group, we
counted the correctly classified images from the total number of im-
ages covered by each group. The average accuracy values of the two
groups are 92.2% and 93.2% for t-SNE-Grid and DendroMap, re-
spectively. DendroMap is slightly higher, but there is no significant
difference. Second, we measured the size of these groups. The average
for t-SNE-Grid is 0.38 and for DendroMap is 0.34, with no significant
difference.

Task 4. In this task, the participants estimated the approximate
percentage of different cars and birds based on car color (yellow, red,
white or silver, or other) or background of birds (e.g., sky), respectively.
To evaluate their responses, we counted the number of car and bird
images that correspond with the aforementioned criteria and calculated
the Kullback-Leibler (KL) divergence score to quantify how much the
probability distributions reported by our participants differ from the ac-
tual distributions. A score of 0 means the two distributions are the same.
Our results show that DendroMap has more counts in between 0.0 and
0.1 than t-SNE-Grid (i.e., 10 vs. 7). This indicates that more partic-
ipants were closer to the actual distribution when using DendroMap.
This is also supported by the medians of the KL divergence scores
where the median is 0.10 for DendroMap and 0.17 for t-SNE-Grid.

Tasks 5 & 6. These tasks were about finding specific images. All the
participants of our study were successful in finding the correct images
using both the t-SNE-Grid and DendroMap.

Task 7. The participants were asked to find labeling errors from mis-
classified images. Unlike Tasks 5 and 6, multiple correct answers exist.
We assessed the images selected by our participants and divided them
into three categories: reasonable, somewhat reasonable, not reasonable.
Based on our assessment of 20 images found by 20 participants, with
t-SNE-Grid, 12 are reasonable and 3 are somewhat reasonable; with
DendroMap, 15 are reasonable and 3 are somewhat reasonable. This
indicates that DendroMap is likely more helpful in finding potential
anomalies in image datasets. The images in DendroMap are divided
into clusters with distinguishable boundaries, which makes it more
convenient to systematically inspect a large number of images than
with t-SNE-Grid.

6.3.3 Evaluation of post-questionnaires

Each participant answered 10 questions in two separate post-
questionnaire forms: one for DendroMap and one for t-SNE-Grid.
They provided ratings on a 7-point Likert scale (7 being strongly agree).
The questions and their average ratings are shown in Table 3.

The results indicate that DendroMap received higher ratings than
t-SNE-Grid in 8 out of 10 questions. The t-SNE-Grid received a
better rating for only the first question regarding the learnability of
the visualization. This is reasonable as t-SNE-Grid supports fewer
interactions than DendroMap. From the ratings of several important
aspects of image visualizations, DendroMap is found to be statistically

Question t-SNE-Grid DendroMap

Easy to learn how to use 6.45 6.30
Easy to use 6.00 6.00
Helpful for overview 5.95 6.45◦
Helpful for detailed analysis 5.15 6.05∗
Helpful for finding specific images 5.10 5.75◦
Helpful to identify image categories 5.70 6.20◦
Helpful to discover new insights 5.25 6.00◦
Confident when using the tool 5.85 6.05
Enjoyed using the tool 6.10 6.40
Would like to use again 5.80 6.65∗

Table 3. Participants’ average ratings for the two visualizations.
DendroMap outscored t-SNE-Grid in 8 out of 10 questions. Bold in-
dicates higher average ratings. ∗ and ◦ indicate 95% and 90% statistical
significance in one-sided Wilcoxon signed-rank tests, respectively.

significantly more preferable than t-SNE-Grid, such as getting an
overview, performing detailed analysis, identifying image categories,
and discovering new insights. Moreover, participants on average in-
clined more towards DendroMap than t-SNE-Grid in mentioning their
eagerness to use the tool again.

6.4 Discussion

We observed participants’ usage while they performed the tasks. Based
on their usage patterns, we have made a few important findings.
DendroMap provides a more structured workflow. Compared to

t-SNE-Grid, it is easier to assess or follow how a user makes certain
decisions with DendroMap. In DendroMap, the presence of clusters and
the hierarchical relationships within them provide significant semantic
information to the participants when they create groups or search im-
ages based on certain properties. One participant said: “The clustering
of DendroMap was very intuitive, more so than the grid one where the
boundaries between groups were not clearly defined. The ability to
click into different levels of clusters was very useful as well.”
DendroMap helps with extracting more specific properties. Us-

ing the semantic information provided by DendroMap, the participants
could find more detailed information about different image groups. This
is more evident with Task 3 where the participants worked with the
images of ships and dogs to find two large groups that have high classi-
fication accuracy and specific properties. With DendroMap, the partic-
ipants mentioned more specific properties compared to t-SNE-Grid.
For example, regarding dogs, DendroMap users described their eyes,
hair length, and facial structure in addition to generic properties such
as size, color, and background. With the t-SNE-Grid, participants
mostly described groups using only generic properties.

Image search can be narrowed down more with DendroMap. The
hierarchical relationships within the clusters helped the participants
narrow their search for a particular image. With DendroMap, they easily
found specific clusters with more images similar to the one they were
looking for. The sub-clusters present within a cluster then helped them
further narrow the search space. On the other hand, with t-SNE-Grid,
they had to check a large group of images as there is no structured
way of narrowing the search. One participant said: “With the treemap,
the ability to narrow down the search without having to recompute the
grid size every time, having some predetermined way of organizing the
images, and having the images broken up into clusters made it very
easy to scan through the images without getting lost. I was able to
quickly filter the exact things I was looking for.”

Cluster summary provided with DendroMap is helpful.
DendroMap provides information about each cluster and sub-cluster,
such as the number of images and classification accuracy. The
participants found this information useful, especially for Tasks 3 and 4.
One participant expressed their liking by saying: “I like the clusters
having details like how many images and the accuracy. Also, the
outline of the different clusters having different sizes helped.”
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6.5 Limitations
No empirical study is perfect. We discuss threats to validity.

Different mechanisms for exploration. While DendroMap users
can navigate tree-structured data at multiple levels, t-SNE-Grid does
not create a hierarchy by default. These differences make DendroMap
not-surprisingly do better with deeper levels of hierarchical analysis.
Our intent was to compare our method against a popular baseline for
ML practitioners, our target population. No matter our intent, the threat
that any hierarchical method might show similar improvement over the
baseline t-SNE-Grid should still be considered.

Types of images shown. An important potential threat to validity
comes down to the image data we used. Depending on the background
of the participants, other factors may explain differences in results, such
as familiarity of images. In addition, the types of images are potentially
an ecological threat to validity. In the real world, datasets may contain
more diverse, complicated, and noisier images than what is contained
in the CIFAR datasets used in our study. For the purposes of the study,
it was necessary to limit the scope for reasonable comparison.

7 EXPERIMENTS: DISTANCE PRESERVATION

Lastly, we evaluate the quality of the cluster structures generated from
DendroMap computationally. We quantitatively measure k-nearest
neighbor accuracy–how well DendroMap preserves the top-k nearest
neighbors in the original high-dimensional space.

7.1 Setup
We measure the number of common images in the top-k nearest images
between one of the techniques and the original high-dimensional repre-
sentation of data, while varying k (i.e., the size of nearest neighbor list).
This is a common way to evaluate the quality of DR methods [58]. The
techniques we compare are: (1) t-SNE, (2) t-SNE-Grid (described
in Sect. 6.1), and (3) DendroMap. We performed this experiment
over 12 different datasets: CIFAR-10, CIFAR-100, and 10 subsets
of CIFAR-10, each from one of the 10 classes. All are trained with
ResNet50 (same setup described in Sect. 6.2.3), but for the first two,
the high-dimensional representations were taken from the last hidden
layer, while those for the 10 subsets were taken from the second-to-last
hidden layer.

While we compute Euclidean distances between 2-D points for
ranking similar images in t-SNE and t-SNE-Grid which assigns a (x,
y) value to each data point, DendroMap needed a different methodology
because it additionally encodes hierarchical structures using treemaps.
We define a distance between two images xi and x j in DendroMap by
measuring the distance from the node for xi in the dendrogram tree
to the nearest common ancestor node between xi and x j. This can be
thought of as how many times a user needs to zoom-out from the leaf
node for xi to reach to the cluster where both xi and x j belong to.

7.2 Results
Figure 8 shows the results. For each of the 12 plots, the x-axis represents
k (in k-nearest neighbor) and the y-axis represents the average number
of common images in two top-k image lists. We display up to 300 for
10,000 image datasets and 50 for the class-level CIFAR-10 datasets
As shown in the figure, in all cases, t-SNE outperforms the other two,
as we can expect, because t-SNE is designed to optimize this metric.
When comparing DendroMap and t-SNE-Grid, DendroMap shares
more top-k nearest neighbors with the high-dimensional representations
than t-SNE-Grid for all 12 datasets. This indicates that DendroMap
preserves the local similarity structures better than t-SNE-Grid.

8 LIMITATIONS AND FUTURE WORK

Computational scalability of clustering. The agglomerative clus-
tering algorithms can be a bottleneck when scaling DendroMap to
larger datasets. The naı̈ve algorithms grow by O(n3) in time but can
be brought down to O(n2) with optimizations [37]. The t-SNE method
runs with a time complexity O(n2) and can use approximation to get to
O(n logn) [56]. Although clustering is less efficient, it only needs to be
computed once for interactive use in DendroMap. For the CIFAR-10
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Fig. 8. Average for the number of common k-nearest neighbours between
t-SNE, t-SNE-Grid, or DendroMap and high-dimensional representations
of images. For all 12 datasets we tested, DendroMap preserves the top-k
images better than t-SNE-Grid.

test set with 10,000 images, the clustering algorithm took 36.8 seconds
compared to 32.0 seconds for t-SNE9 (ran on macOS 12.4, 2.6 GHz
6-Core Intel Core i7 cpu). Future work can investigate more efficient
strategies to create hierarchical structures of data.

Comparison with other tree construction methods. In the user
study, we compared DendroMap with t-SNE, the most well-known
technique (specifically t-SNE-Grid); however, as noted in the limi-
tations in Sect. 6.5, t-SNE does not create an explicitly hierarchical
structure. In the future, DendroMap can be compared against a variety
of other techniques (e.g., H-SNE [44]) to evaluate the effectiveness of
algorithms that produce hierarchical structures.

Interactive refinement of tree structures. While the agglomera-
tive clustering algorithms generate hierarchical structures that allow
users to flexibly specify the number of clusters to be displayed, the
formed structures may not be ideal for some cases. Visualization re-
searchers have extensively studied interaction methods for steering
and refining clustering results [14, 66]. Future research challenges
include designing user interactions for refining clustering results in
DendroMap.

Using interpretable attributes for tree construction. We used
embedding vectors extracted from deep learning models as input to
clustering algorithms, but alternative methods may help people better
interpret substructures of each cluster in DendroMap. For example, rep-
resenting each image with human-understandable concepts [31, 71] or
additional resources [65] may make each dimension more interpretable.
Alternatively, integrating information about each dimension of the em-
bedding vectors into the interface using explainable AI methods can
also be helpful [26, 41].

Formalizing interaction operations. Several data manipulation
operations can also be provided in DendroMap. For example, sorting
images within each node by user-specified criteria (e.g., prediction
scores) or splitting and zooming into only a subset of nodes [6, 66].
Formalizing these types of operations would allow for more flexible
user exploration. Integrating some ideas presented in the unit visualiza-
tion literature [43, 48, 61], such as horizontally or vertically separating
space based on categorical attributes in Facets-Dive [60, 61], into the
treemap context would also be an interesting future direction.
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