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Abstract: The Poincaré disk is often taught to students to provide a model for hyperbolic
geometry. Despite its apparent simplicity, certain properties of the Poincaré disk still appear
arbitrary. In particular, the Poincaré disk distance function d(A,B) =

∣∣∣ln(AQ
BQ × BP

AP

)∣∣∣ appears
to be an overly-complicated and arbitrary choice. This paper sheds light on where the Poincaré
disk distance function comes from to explain why it’s not an arbitrary choice whatsoever.
Specifically, I describe how to stereographically project a sphere onto a plane. Then, I show
how to get the Poincaré disk using the same projection method, but starting with a hyperboloid
in Minkowski space. Finally, I show that the Poincaré disk distance function is the projected
distance function from the hyperboloid.

1. Introduction

The Poincaré disk is taught in geometry classes for good reason. As a model of hyperbolic
geometry, the Poincaré disk is simple enough to draw on a piece of paper (or show on a computer
screen [1]), yet weird enough to clearly show differences with Euclidean geometry. Students
can visually show that lines curve inwards towards the center, Euclid’s parallel postulate fails
(more than one parallel line in Figure 1A), triangles appear squished down (angle sum < 180° in
Figure 1B), quadrilaterals appear squished down (angle sum < 360° in Figure 1C), and more [2].
With the Poincaré disk, students are not told the properties of hyperbolic geometry – they discover
them.

However, there is a non-Euclidean elephant in the room. The distance function in the Poincaré
disk, stated as [2]

d(A,B) =

∣∣∣∣ln(AQ

BQ
× BP

AP

)∣∣∣∣ (1)

(visually shown in Figure 2) elicits many furrowed eyebrows among students. They ask:
everything was so simple, what went wrong? How could the distance between points A and B in

A B C

Figure 1: Simple constructions in the Poincaré disk to show deviations from Euclidean
geometry.
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Figure 2: Example of the distance function in the Poincaré disk.

the Poincaré disk be defined by the ratio of the Euclidean distance between boundary points P
and Q (see Figure 2), then evaluated inside of a natural log? The distance function appears to be
overly complicated, completely arbitrary, and altogether confusing.

On the contrary! The distance function (1), starting from the right context, makes a great
deal of sense! By showing where the distance function originally comes from, the reader
can have a greater intuition for why the Poincaré distance function looks like it does. To be
specific, this paper shows that the Poincaré disk distance function (1) comes from projecting a
three-dimensional hyperboloid in Minkowski space onto the xy plane.

This paper contributes the following explanations:
• Why stereographic projection? A scenario for the reader to imagine in Section 2 to show

the advantages of stereographic projection.

• Stereographic projection of a sphere onto the plane in Section 3. I show how projection
works in a more familiar case before moving to the hyperboloid case in Section 4. I perform
stereographic projection in Euclidean space, then I show how distance works on the sphere
and on the projection.

• Stereographic projection of a hyperboloid onto the plane in Section 4. I perform
stereographic projection, but in Minkowski space, then I show how distance works on the
hyperboloid and on the projection.

• Finding the Poincaré disk distance function in Section 5. I show that the familiar
distance function (1) in the Poincaré disk is not arbitrary. In particular, I conclude that the
projected hyperboloid distance function is just the Poincaré disk distance function.

2. A Stereographic Perspective

Imagine that you’ve woken up in the middle of the night and you can’t move a muscle no matter
how hard you try.

In fact, all you can do is stare up at your ceiling in the pitch black dark. Even more alarmingly,
you only see three curvy neon-lit lines that come together make a warped triangle on your ceiling
(shown on the left in Figure 3). Because you have no other choice, you stare at the triangle and
ponder your life.
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Midnight Perspective Daytime Reality

You

Figure 3: A triangle on a sphere from two perspectives: your first-person point of view
at midnight and the three-dimensional reality.

A few hours go by, the sun starts to rise, and glimmers of light shine through your window
blinds. Oddly enough, you start to see glares all around you. There seems to be a glass barrier
surrounding you. Now that you’re depth perception is back, you find the reality of your situation.
You are lying down on the bottom of a glass sphere (see Figure 3 on the right). And the sphere
has straight neon-colored lines drawn on top of it!

But you swore that in the dark it was just a warped triangle on your flat ceiling! But now it’s
clear that you were seeing straight lines on a curved surface. This situation describes stereographic
projection. In the dark, your bottom perspective (Figure 3) still captures a great deal about the
triangle, but is much simpler without the third dimension.

Stereographic projection (your perspective) preserves the angles and distances from the
original model [3]. In this scenario, stereographic projection is a conformal representation of the
sphere [3]. If distance makes more sense on the sphere, I can think of lines on the sphere, and
know that the projection inherits the same properties.

For the purposes of this paper, I will use stereographic projection to show where the Poincaré
disk distance function comes from.

3. Sphere Stereographic Projection

Before I use stereographic projection on a hyperboloid (Section 4), I’ll first show the easier case:
stereographic projection of a sphere. Then, I’ll show the distance function on the sphere and on
the projection.

3.1. Projection

Our sphere defined by 1 = x2 + y2 + z2 lives in three-dimensional Euclidean space (see
Figure 4A) with the Euclidean line element

ds2 = dx2 + dy2 + dz2. (2)

A point on our sphere is represented by (x, y, z) with parameters θ and ϕ as

D = (sin(θ) sin(ϕ), cos(θ) sin(ϕ), cos(ϕ)). (3)

Like in Section 2, you first take the bottom perspective B looking up to a point on the sphere
D. I will define B = (0, 0,−1) and D as the point on the sphere (3) as shown in Figure 4B. The
projection P is where the segment BD intersects the xy plane in Figure 4B.
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A B C

Figure 4: Stereographic projection of a sphere onto the xy plane.

To solve for the projection P , I will use similar triangles [4]. If I consider a point C as the z
direction of point D and O as the origin, I can construct two triangles: △DBC and △PBO. As
shown in Figure 4C, the △PBO is nested inside of △DBC. The triangles are similar because
they have congruent corresponding angles.

Using the similar triangles, I know the corresponding segments are proportional so I can relate
OP to CD and OB to CB as OP

CD = OB
CB . I know that OP is just the y value of P (notated as Py)

and OB = 1. I also know that CD is the y value of D as cos(θ) sin(ϕ) and CB = 1 + cos(ϕ)
to give me

OP

CD
=

OB

CB
Py

cos(θ) sin(ϕ)
=

1

1 + cos(ϕ)

Py =
cos(θ) sin(ϕ)

1 + cos(ϕ)

= cos(θ) tan

(
ϕ

2

)
. (4)

Then, I can solve for the x direction of P (notated as Px) with the same method, but where
CD is now the x value of D as sin(θ) sin(ϕ) to give me

OP

CD
=

OB

CB
Px

sin(θ) sin(ϕ)
=

1

1 + cos(ϕ)

Px =
sin(θ) sin(ϕ)

1 + cos(ϕ)

= sin(θ) tan

(
ϕ

2

)
. (5)

Putting the pieces together, I get that the stereographic projection of the sphere onto the xy
plane is

P = (Px, Py)

=

(
sin(θ) tan

(
ϕ

2

)
, cos(θ) tan

(
ϕ

2

))
. (6)
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A B C

Figure 5: The distance on the sphere is the distance between the same projected points.

3.2. Distance

Now that I have the stereographic projection, I can find the distance function on the sphere and
on the projection.

I will consider the distance between two new spherical points A and B as shown in Figure 5A.
And to vastly simplify the distance function d(A,B), I will consider the distance between points
when θ = 0 which allows me to ignore the x direction as shown in Figure 5C. By ignoring the x
direction, I can define points (y, z) only with the ϕ parameter like

B = (sin(ϕ), cos(ϕ)). (7)

If I consider B a vector (Figure 5B), I can take an infinitesimal step away from B on the sphere
as the vector dB. To see how ϕ affects the output, I can take the vector derivative to get

dB

dϕ
= (cos(ϕ),− sin(ϕ))

dB = (cos(ϕ),− sin(ϕ))dϕ. (8)

The derivative of B with respect to ϕ represents the tangent vector to B. So dϕ scaled by
the magnitude of the tangent is just dB. Since we are in Euclidean space, I can use Euclidean
distance to get the magnitude of a vector v as ||v|| =

√
v2x + v2y + v2z .

I can take the magnitude of the vector in (8) to get that

dB = ||(cos(ϕ),− sin(ϕ))|| dϕ

=

√
cos2(ϕ) + sin2(ϕ) dϕ

= dϕ (9)

by using that y2 + z2 = 1 when θ = 0 and
√

cos2(ϕ) + sin2(ϕ) = 1.
From (9), I conclude that distance and ϕ are the same. Furthermore, (9) shows that ϕ is an

angle so I can use trigonometric properties in the distance formulation.
Next, I can integrate (9) between two angles ϕA and ϕB (from A and B) to get the distance

function as ∫ ϕB

ϕA

dϕ = ϕ
∣∣ϕB

ϕA

d(ϕA, ϕB) = ϕB − ϕA (10)
d(A,B) = sin−1(B)− sin−1(A) (11)
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where (10) is the distance given the angles and (11) is the angle conversion to y values of A and
B.

Then, to get the distance function on the projection P , I can transform the coordinates so that
the spherical distance function takes projection P as input.

Recall that Py = cos(θ) tan
(

ϕ
2

)
from (4), and due to my simplification of θ = 0, the Py is

just tan
(

ϕ
2

)
. I can solve for ϕ as ϕ = 2 tan−1(Py) and substitute the angle ϕ back into (10) to

get

dP (PA, PB) = 2 tan−1(PB)− 2 tan−1(PA) (12)

given PA and PB are the projected points as shown in Figure 5C. Finally, we have the distance
function dP for the points on the spherical projection!

4. Hyperboloid Stereographic Projection

To get the Poincaré disk distance function, I can apply the logic from the last Section 3, but in
Minkowski space where the line element is

ds2 = dx2 + dy2 − dz2 (13)

instead of the Euclidean line element (2).

4.1. Projection

First, I’ll define a hyperboloid as 1 = z2 − y2 − x2 as shown in Figure 6A. Similar to the
Euclidean sphere, the hyperboloid has constant distance from the center to any point on the
hyperboloid in Minkowski space.

A point on the hyperboloid (x, y, z) can be defined parametrically by θ and ϕ as

D = (sin(θ) sinh(ϕ), cos(θ) sinh(ϕ), cosh(ϕ)) . (14)

To project the hyperboloid point D onto the xy plane, I can place a bottom perspective
B = (0, 0,−1) and define P as the intersection of BD with the xy plane as shown in Figure 6B.

I will apply the same similar triangles reasoning [4] in Section 3.1 to create the triangles
△DBC and △PBO where C is the z direction of D and O is the origin as shown in Figure 6C.

Then, I know the corresponding segments are proportional so I can relate OP to CD and
OB to CB as OP

CD = OB
CB as shown in Figure 6C. I know that OP is just the y value of P

A B C

Figure 6: Stereographic projection of a hyperboloid onto the xy plane.
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(notated as Py) and OB = 1. I also know that CD is the y value of D as cos(θ) sinh(ϕ) and
CB = 1 + cosh(ϕ) to give me

OP

CD
=

OB

CB
Py

cos(θ) sinh(ϕ)
=

1

1 + cosh(ϕ)

Py =
cos(θ) sinh(ϕ)

1 + cosh(ϕ)

= cos(θ) tanh

(
ϕ

2

)
. (15)

Then, I can solve for the x direction of P (notated as Px) with the same method, but where
CD is now the x value of D as sin(θ) sinh(ϕ) to give me

OP

CD
=

OB

CB
Px

sin(θ) sinh(ϕ)
=

1

1 + cosh(ϕ)

Px =
sin(θ) sinh(ϕ)

1 + cosh(ϕ)

= sin(θ) tanh

(
ϕ

2

)
. (16)

Putting the pieces together, I get that the stereographic projection, the Poincaré disk, is

P = (Px, Py)

=

(
sin(θ) tanh

(
ϕ

2

)
, cos(θ) tanh

(
ϕ

2

))
. (17)

4.2. Distance

Now that I have the stereographic projection from hyperboloid to Poincaré disk, I can find the
distance function on the hyperboloid and on the projection.

Just like in Section 3.2, I will consider the distance between two new pointsA andB as shown in
Figure 7A. To vastly simplify the distance function d(A,B), I will consider the distance between

A B C

Figure 7: The distance on the hyperboloid is the same as on the Poincaré disk projection.
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points when θ = 0 which allows me to ignore the x direction as shown in Figure 7C. The point
can be represented as (0, sinh(ϕ), cosh(ϕ)) when θ = 0 so I can represent the two-dimensional
(y, z) vector as

B = (sinh(ϕ), cosh(ϕ)). (18)

as shown in Figure 7B.
From the vector B in (18), I can take an infinitesimal step from B as dB. Relating dB and dϕ

I get the following vector derivative

dB

dϕ
= (cosh(ϕ), sinh(ϕ))

dB = (cosh(ϕ), sinh(ϕ))dϕ. (19)

The derivative of B with respect to ϕ represents the tangent vector to B. So the magnitude of
the tangent vector scales dϕ to become dB. Since we are in Minkowski space, the magnitude of
a vector v is ||v|| =

√
v2x + v2y − v2z .

I can take the magnitude of the vector in (19) to get that

dB = ||(cosh(ϕ), sinh(ϕ))|| dϕ

=

√
cosh2(ϕ)− sinh2(ϕ) dϕ

= dϕ (20)

since y2 − z2 = 1 when θ = 0 and
√
cosh2(ϕ)− sinh2(ϕ) = 1.

From (20), I conclude that distance and ϕ are the same. Furthermore, (20) shows that ϕ is an
angle so I can use hyperbolic trigonometry in the distance formulation.

Then, I can integrate (20) from ϕA to ϕB to get the hyperboloid distance function as∫ ϕB

ϕA

dϕ = ϕ
∣∣ϕB

ϕA

d(ϕA, ϕB) = ϕB − ϕA (21)
d(A,B) = sinh−1(B)− sinh−1(A) (22)

where (21) is the distance given the angles and (22) is the angle conversion to y values of A and
B.

Finally, I can convert the units so that I can input projection points P into the hyperboloid
distance function (21). Since I only consider when θ = 0, I am only concerned with the y value
of P as Py = tanh−1

(
ϕ
2

)
. I can solve for ϕ as ϕ = 2 tanh−1(Py) and substitute the angle ϕ

back into (21) like

dP (PA, PB) = 2 tanh−1(PB)− 2 tanh−1(PA) (23)

where PA and PB are the y values of the projected A and B points.
Then, I can use the fact that tanh−1(z) = 1

2 [ln(1 + z)− ln(1− z)] from [5] to simplify (23)
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Figure 8: Points on the Poincaré disk y axis.

to

dP (PA, PB) = 2 tanh−1(PB)− 2 tanh−1(PA)

= 2

(
1

2
[ln(1 + PB)− ln(1− PB)]

)
− 2

(
1

2
[ln(1 + PA)− ln(1− PA)]

)
= ln

(
1 + PB

1− PB

)
− ln

(
1 + PA

1− PA

)
= ln

(
1 + PB

1− PB
× 1− PA

1 + PA

)
= ln

(
1 + PB

1 + PA
× 1− PA

1− PB

)
. (24)

5. Finding the Poincaré disk distance function

Finally, I will show that the original Poincaré disk distance function (1) is actually the same as
what we got in (24) for the projection.

Since I restricted θ = 0 and kept ϕ positive in my formulation, I only consider positive y
values in the projection. Starting from the original Poincaré disk, I can define points A and B on
the vertical y axis and boundary points P and Q as shown in Figure 8.

Then, I can find the Eucldean measures defined in the original Poincaré disk distance function
(1). Since the Euclidean distance from a boundary point to the center is one, it’s straightforward
to see in Figure 8 that AQ = 1−Ay , BQ = 1−By , BP = 1 +By , and AP = 1 +Ay .

Substituting the Euclidean segment measures back into (1) I get that

d(A,B) =

∣∣∣∣ln(AQ

AP
× BP

BQ

)∣∣∣∣
= ln

(
1−Ay

1−By
× 1 +By

1 +Ay

)
. (25)

By using my previous notation (where Ay is just the projection PA and By is just the projection
PB) and reordering the multiplication, I finally get

ln

(
1 + PB

1 + PA
× 1− PA

1− PB

)
(26)

9



which is the exact same as the projected distance function we found in (24)!
The Poincaré disk distance function is just the distance function after stereographically

projecting the hyperboloid onto the xy plane in Minkowski space!

6. Conclusion

By showing distance on the hyperboloid and on the stereographic projection, we’ve found where
the Poincaré disk distance function comes from.

The distance function is still not very simple, but at least you can see that the function is
not arbitrary! The Poincaré disk distance function comes from a very logical starting point in
Minkowski space.

In the future, generalizing the arguments in this paper would make a more comprehensive,
but much lengthier, explanation. In particular, I only considered points such that θ = 0 to vastly
simplify the distance function for presentation.
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