
PROTEINSCATTER: Visualizing Fragments of
Structurally Similar Proteins with a Scatterplot
DONALD BERTUCCI

Oregon State University, Corvallis, Oregon, USA
bertuccd@oregonstate.edu

Figure 1: ProteinScatter: each white point represents a protein. Close points
represent similar proteins. A select few regions in orange are shown along with their
Protein Data Bank [1] protein structures.

Abstract: The Venom Biochemistry and Molecular Biology Laboratory at Oregon State
University has hundreds of protein structures, but with completely unknown functions. I’ve
developed a method to map out three-dimensional (3D) protein structures from the Protein Data
Bank to compare against their proteins with unknown functions. Specifically, I use a sequence
representation that encodes 3D structure (using Foldseek’s 3Di model), then I train a deep
transformer model (I call 3Di-transformer) on those sequences. Finally, I visualize hundreds
of thousands of neural network representations in two dimensions (2D) using the UMAP
algorithm and a scatterplot. The ProteinScatter implementation is described in this paper and
open-sourced on GitHub https://github.com/xnought/protein-scatter.

1. Introduction

This paper aims to visualize protein similarity as a way to discover similar proteins with known
functions. Specifically, this paper visualizes a subset of the Protein Data Bank [1] (PDB) proteins
in a map and places proteins from the Venom Biochemistry and Molecular Biology Lab [2]
(Venom Lab) within the map.

The final visualization called ProteinScatter (as shown in Figure 1) is analogous to a
geographic map, but where regions and clusters represent groups of similar 3D structures of
known proteins. By placing our proteins with unknown function in this map, I can find similar
structures across regions. Once you find similar proteins, you can then use their known function,
or at least more information from the PDB, to start to hypothesize about your own structures.

To convert proteins into this map like in Figure 1, I trained a transformer model on a large

1

mailto:bertuccd@oregonstate.edu
https://github.com/xnought/protein-scatter


subset of the PDB proteins after first converting them to Foldseek’s 3Di sequence [1,3,4]. To put
it simply, this model aims to find which parts of the protein’s 3D structure are the most important.
Then, I can spatially place similar proteins in a 2D scatterplot with the UMAP algorithm [5].

For the exact details, see any one of these sections in the paper:
• The background outlining my thought process which led to the methods in Section 2.

• The methods for how I modeled the 3D structures and transformed them into the Protein-
Scatter in Section 3.

• The results showing how using ProteinScatter helps identify possible functions of
proteins from the Venom Lab in Section 4.

• My concluding remarks and acknowledgements in Section 5.

2. Background

Proteins are variable in length: one protein may have a longer amino acid sequence than another.
Unfortunately, Machine Learning (ML) algorithms thrive off of fixed length data structures.
Since I want to use ML methods to model 3D protein structure and transform proteins into a 2D
scatterplot, I need all of my data to have the same number of dimensions – not variable. In other
words, I need a set of vectors with dimension d to represent my proteins.

One great way to convert some data into a fixed size vector of dimension d is with neural
network embeddings. I’ll give you an intuitive, but off topic, example: I can train a neural
network to predict whether a dog image is a golden retriever or not. If the model is trained
effectively and performs well, I can assume that the neural network was able to separate the
vectors at layer l in the neural network sufficiently to perform well on the task as shown in
Figure 2. I can apply the same idea to protein 3D structure to embed the proteins as vectors.
To extract protein embeddings, I first need to model the 3D structure of the proteins. The most
effective strategy to date of modeling sequences is with attention based methods such as OpenAI’s
GPT models [3, 6]. These models take a sequence of tokens and asks the model to generate the
next token. The attention architecture works by asking what parts of the previous sequence should
we pay attention to in order to predict the next token [3]. In the context of protein sequences,

Figure 2: By training a neural network on a meaningful task, an intermediate represen-
tation, the embedding vector, separates in space based on similarity.

2



Figure 3: First, I convert the amino acid sequence and 3D structure to the Foldseek
3Di alphabet [4]. Then, I train a transformer model to predict the next 3Di letter in the
sequence.

attention would mean asking which 3D structures are the most prominent/important: which 3D
structures we should pay attention to.

To infuse 3D information into the amino acid sequence, I’ll use the Foldseek 3Di alphabet [4].
I do this by converting each amino acid in the protein to 3Di (Foldseek’s 3D code) by extracting
angle and distance based information from each amino acid given 3D spatially close neighbors [4].
I’ve shown a figure directly taken from the Foldseek paper [4] in Figure 3 on the left. This
local snapshot of 3D structure (the angles and distances) is then converted into one of 20 letters
representing different geometries in the protein [4].

Next, I can train the sequence model and attempt to capture patterns in the 3D structure. As
shown in Figure 3 on the right, I can train a model, which I’ll call 3Di-transformer, to predict the
next 3Di letter by modeling which previous 3Di letters are most important (attention). I can then
easily extract embedding vectors for each protein from this 3Di-transformer model.

Note that the 3Di-transformer has a fixed block size that it can look at. In the case of Figure 3,
I take in seven previous letters (in orange) as context to predict the next letter. To encode larger
sequences than seven, I would have to iterate over the entire sequence in chunks of seven to get
multiple embedding vectors to represent one protein. Hence the title “Visualizing Fragments Of
Structurally Similar Proteins with a Scatterplot." Note that for the actual 3Di-transformer I use a
much larger block size (context) of 128.

In essence, by training a model to use a context of 3D structures to predict the next 3D structure
on a large database like the PDB, my 3Di-transformer will figure out how to model protein
structure and which parts of the 3D structure are most useful. As a result, the embedding vectors
will be useful for similarity comparison.

3. Methods

In this methods section, I describe how I trained the 3Di-transformer (Section 3.1). I then encode
each protein as embedding vectors that can be reduced to 2D with the UMAP algorithm to create
the ProteinScatter (Section 3.2).

3.1. Training the 3Di-transformer

I used PyTorch1 to implement repeated blocks of multi-headed self-attention exactly like
nanoGPT [7]. Based on the the sequence length context of 128, I predicted the next 3Di letter to

1https://pytorch.org/

3

https://pytorch.org/


Figure 4: Training and validation loss over 40 thousand iterations logged every 100
iterations. The lower the loss the better the model.

train the model. Since the PDB houses around 200 thousand proteins, I downloaded the entire
database for training. First, I converted all the the PDB proteins into 3Di sequence representations
with Foldseek [4]. Then, I trained the 3Di-transformer on those sequences.

The transformer model had a block_size of 128, vocab_size of 20 (the 20 possible 3Di
letters), n_embd of 256 (embedding size), 8 n_heads per self-attention block, and 20 n_layers of
self-attention (blocks repeated). In total there were around 15 million learnable parameters over
the 20 layers. For more details on the exact architecture please see the model code2. I followed
closely how GPT2 and nanoGPT are implemented [6, 7].

I trained the model on an Nvidia T4 GPU for just over four hours straight. I used batches
of 64 proteins per forward pass for 40 thousand iterations. During training, the model saw
around 64 ∗ 128 ∗ 40000 ≈ 327 million 3Di letters from the PDB. I randomly sampled the
PDB proteins each batch, then randomly sampled a 128 block within the indexed protein. To
optimize the model, I compared the model’s predicted 3Di with the true 3Di in the sequence
using Cross-Entropy loss [8] and performed gradient descent with the AdamW optimizer [9].
The loss function output is shown in Figure 4 where a lower loss is better. The validation set
used five percent of the PDB. I used the validation set to test how the model does on unseen data.
I stopped training once the validation loss flattened out as seen in Figure 4. For exact details, see
the training code3. The trained weights are linked on the Github repository.

I extracted embeddings just after the last multi-headed self-attention block and just before the
final dense layer of prediction probabilities. Since the n_embd parameter was 256, that would be
the dimension of the embedding vector. After training, these embedding vectors now effectively
represent the most important 3D structures of a given protein and are ready to be transformed
into 2D.

2https://github.com/xnought/protein-scatter/blob/main/training/model.py
3https://github.com/xnought/protein-scatter/blob/main/training/train.py

4

https://github.com/xnought/protein-scatter/blob/main/training/model.py
https://github.com/xnought/protein-scatter/blob/main/training/train.py


Figure 5: When you select a protein, the ProteinScatter highlights regions where
you’ll find structurally similar proteins.

3.2. UMAP to 2D

First, I need to iterate over each protein with a block size of 128 to extract the embedding vectors
where each is of 256 dimensions. For example, an 80 residue long protein would only have
⌈80/128⌉ = 1 vector embedding while a 1000 long one would be ⌈1000/128⌉ = 8 vectors to
represent pieces/fragments of that one protein.

I then used the UMAP algorithm [5] with n_neighbors of 8 to generate the visualization as
shown in Figure 5. I experimented with higher n_neighbors, but a close local structure of 8
turned out visually the best.

UMAP roughly works by placing points randomly in the lower dimension (in this case 2D),
then adjusting those points such that we maintain the same nearest neighbors they had in the
higher dimension (in this case 256D). UMAP is actually much more sophisticated than what I’ve
said since they use efficient optimization and graph representations, but you get the point [5]. In
some sense we’re trying to infuse the 256 dimensions that describe the 3D structure into just 2
dimensions. The output 2D points are linked in the GitHub repository.

For the final visualization in Figure 5, I used 106,193 proteins from nearly 200,000 since I
could not fit all of the PDB in 16GiB of RAM for the UMAP computation. Instead, I filtered the
number of proteins down to be at least 64 residues long and no longer than 1024 which greatly
reduced the number of proteins to map into 2D. Since one protein can map to multiple embedding
vectors, I ended up visualizing 271,684 points in total in the ProteinScatter 2D map.

4. Results

To visualize the results, I built a website interface with an interactive scatterplot visualization4.
As shown in Figure 5, there is a main scatterplot where each white point represents a PDB protein.
On the left sidebar, you can select a Venom Lab protein to see regions in space with similar PDB
proteins (Figure 5 in green).

In this particular example, I wanted to find similar proteins to a protein from the Ganaspis
hookeri parasitioid wasp venom [10]. See the top right in Figure 5 for the structure. I used the

4A video demo of ProteinScatter: https://github.com/xnought/protein-scatter/blob/
main/README.md#protein-scatter

5

https://github.com/xnought/protein-scatter/blob/main/README.md#protein-scatter
https://github.com/xnought/protein-scatter/blob/main/README.md#protein-scatter


Figure 6: Zooming into the first region, I can select some points and view them on the
right sidebar. As you can see many of the neighboring points look almost identical to
our protein.

Mol* visualization package [11] to render the protein. To reiterate, the protein structures are from
the Venom Lab [2] at OSU where they used AlphaFold [12] to generate predicted structures.

Next, I’ll use the highlighted regions to find similar proteins from the PDB with useful
information. In the ProteinScatter interface, I can zoom in and select points around those
green regions for a closer look.

By checking the top region, as shown in Figure 6, I can see that the neighboring proteins are
very similar in shape to our protein. I added the ability to compare proteins on top of each other
using US-align [13] to superimpose the PDB protein (orange) on the venom protein (green) in
the top right of Figure 6. From my analysis around the highlighted region, I can see that the
general shape of the protein matches well with other immune signaling and toxin based proteins
from the PDB.

Just like that I can find a starting point for what the function might be for that protein. I can
further analyze the linked papers and additional data from the PDB proteins if I want more
information.

5. Conclusion

In this paper, I’ve modeled 3D protein structure to create the 3Di-transformer. Then, I
visualized the 3Di-transformer’s embeddings in a 2D scatterplot called ProteinScatter. With
ProteinScatter you can easily find regions in space with similar proteins from the PDB.

Acknowledgments. I wrote this paper for Oregon State University’s BB 499 Molecular Modeling class
taught by Dr. Juan Vanegas5. Thank you to Juan for the teaching and compute resources.

I was inspired to work with venom proteins because of my prior work with Michael Youkhateh6 and Dr.
Nathan Mortimer7. I am thankful they gave me permission to use their proteins in this paper.

5https://biochem.oregonstate.edu/directory/juan-vanegas
6https://biochem.oregonstate.edu/directory/michael-youkhateh
7https://biochem.oregonstate.edu/directory/nathan-mortimer

6

https://biochem.oregonstate.edu/directory/juan-vanegas
https://biochem.oregonstate.edu/directory/michael-youkhateh
https://biochem.oregonstate.edu/directory/nathan-mortimer


References
1. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The

Protein Data Bank,” Nucleic Acids Res. 28, 235–242 (2000). https://doi.org/10.1093/nar/28.1.235.
2. Oregon State University Venom Biochemistry and Molecular Biology Laboratory. https://

venombiochemistrylab.weebly.com/.
3. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is

all you need,” (2017). https://arxiv.org/pdf/1706.03762.pdf.
4. M. van Kempen, S. S. Kim, C. Tumescheit, M. Mirdita, J. Lee, C. L. M. Gilchrist, J. Söding, and M. Steinegger, “Fast

and accurate protein structure search with foldseek,” Nat. Biotechnol. 42, 243–246 (2024). https://doi.org/
10.1038/s41587-023-01773-0.

5. L. McInnes, J. Healy, N. Saul, and L. Großberger, “Umap: Uniform manifold approximation and projection,” J. Open
Source Softw. 3, 861 (2018). https://doi.org/10.21105/joss.00861.

6. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsupervised multitask
learners,” (2019).

7. A. Karpathy, “nanoGPT: The simplest, fastest repository for training/finetuning medium-sized GPTs,” (2022).
https://github.com/karpathy/nanoGPT.

8. PyTorch, “torch.nn.CrossEntropyLoss,” https://pytorch.org/docs/stable/generated/torch.nn.
CrossEntropyLoss.html.

9. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” (2019).
10. N. Bretz, C. Lark, and N. Mortimer, “Not quite FedEx: How are venom proteins packaged for delivery by the

parasitoid wasp Ganaspis hookeri?” J. Biol. Chem. 299, S804 (2023).
11. D. Sehnal, S. Bittrich, M. Deshpande, R. Svobodová, K. Berka, V. Bazgier, S. Velankar, S. K. Burley, J. Koča, and

A. S. Rose, “Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures,”
Nucleic Acids Res. 49, W431–W437 (2021). https://doi.org/10.1093/nar/gkab314.

12. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek,
A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain,
J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis, “Highly accurate
protein structure prediction with AlphaFold,” Nature 596, 583–589 (2021). https://doi.org/10.1038/
s41586-021-03819-2.

13. C. Zhang, M. Shine, A. M. Pyle, and Y. Zhang, “Us-align: universal structure alignments of proteins, nucleic acids,
and macromolecular complexes,” Nat. methods 19, 1109–1115 (2022).

7

https://doi.org/10.1093/nar/28.1.235
https://venombiochemistrylab.weebly.com/
https://venombiochemistrylab.weebly.com/
https://arxiv.org/pdf/1706.03762.pdf
https://doi.org/10.1038/s41587-023-01773-0
https://doi.org/10.1038/s41587-023-01773-0
https://doi.org/10.21105/joss.00861
https://github.com/karpathy/nanoGPT
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://doi.org/10.1093/nar/gkab314
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2

