
Random Number Generator with Elementary Cellular

Automata in Matlab

Donald Bertucci∗

Abstract: In Matlab, I implemented a random number generator that uniformly generates num-
bers between 0 and 1. I created the rand eca function to sample from a simple yet chaotic sys-
tem: Elementary Cellular Automata Rule 30. I then showed that my rand eca function is likely
a uniform random distribution by using the χ2 test. Finally, I implemented the uniform to pdf

function to map the uniform rand eca to any another distribution (like standard normal). All
the Matlab code is open source at https://github.com/xnought/rand-eca and shown in the
Appendix starting from Appendix A.

1 Introduction

Elementary Cellular Automata (ECA) have extremely simple rules that transform the current
state (a 1D list of on and off cells) to the next state, and from that state to the next state,
and so on [3, 4, 5]. A simple example is shown on the left in Figure 1 for one time step. The
simplicity might lead you to believe the system is predictable, but you would be wrong. Some
ECA update rules, like Rule 30, lead to emerging complex patterns that are unpredictable and
chaotic (see Figure 1 on the right) [1, 3, 4, 5].

To be specific, at the current time step t you could not predict the state n steps into the
future t+ n without computing all the steps in between (computationally irreducable)[3, 4, 5].
There are no shortcuts or linear patterns: you have to manually apply the rule n times to get
to t+ n [1, 3, 4, 5]. Since the more unpredictable a system is, the more seemingly random it is,
I created a Matlab random uniform function from Rule 30 which I called rand eca.

Figure 1: On the left, I transformed the 1D list of on (black) and off (white) cells from a Start
state to the Next state with Rule 30. On the right, I applied Rule 30 for hundreds of iterations
starting from a 129 cell wide start state with 1 black cell in the middle.

∗Oregon State University, donnybertucci.com

1

https://github.com/xnought/rand-eca
https://www.donnybertucci.com/

Figure 2: Running ECA Rule 30 for 512 generations from the starting state of 513 cells with 1
in the middle. Here I only visualize row 257 to 513. On the right I show a zoomed-in 13 cell
long chunk from a column converted to decimal.

2 Implementation of rand eca

In Matlab, I implemented the rand eca function (Appendix F) in three steps: running genera-
tions of ECA with Rule 30 (Section 2.1), converting the ECA output to numbers between 0 and
1 (Section 2.2), and putting the two together for rand eca (Section 2.3).

2.1 Generating Elementary Cellular Automata

Given a starting state as a one-dimensional list of 1s (black) and 0s (white), I first implemented
a function to produce the next state. The function rule30(vec3) (Appendix A) takes a vector
with three cells to produce the ith cell in the next state using Rule 30. The transformation
shown on the top left in Figure 1 is equivalent to p xor (q or r) where p, q, r are the three bits
denoting the three cells [3]. I slid the rule30 function across the 1D state to produce the ith
cell in the next state with the function next state rule30(current state) (Appendix B) as
shown in the bottom left in Figure 1.

To produce many iterations of Rule 30, I implemented the iterate rule30(start state,

n iterations) function (Appendix C) which produced the visuals on the right in Figure 1. All
this function does is apply the next state rule30 to the current state to produce the next state.
Then it uses that next state to produce the state after that, and so on for n iterations. To visu-
alize the output, I created a function called visualize rule30(start state, n iterations,

visualize from i) (Appendix D) which simply runs iterate rule30 and outputs a Matlab fig-
ure from rows visualize from i till the last row. For example, visualize rule30([zeros(1,

256) 1 zeros(1, 256)], 512, 257) produced the Figure 2 and visualize rule30([zeros(1,

64) 1 zeros(1, 64)], 200, 1) produced the Figure 1.

2.2 Extracting Numbers

As shown in Figure 2 on the right, I can take a single column from the generations of Rule 30
and convert the bits to a decimal number between [0, 1). In my case, I wanted 13 bits for each
number, so I can take a 13 cell long column from the generations and interpret the white cells
as 0 and the black cells as 1. I can convert from base 2 to base 10 as

d(b) = b1 · 20 + b2 · 21 + · · ·+ bn · 2n−1 (2.1)

where bi is the bit at index i (going from right to left) in a bit string and n is the total number
of bits in that bit string.

2

Then, to force the decimal d into a fraction value, I’ll divide the representation by the largest
possible decimal of all 1s like 11 . . . 1 which is just 2n − 1 in decimal (since 0 is all 00 . . . 0 we
subtract 1 from 2n possible n long permutations). Because I want the fractional decimal to never
be 1 itself, I’ll add 1 to the divisor as 2n − 1 + 1 = 2n. Simplifying the normalized expression I
get

f(b) =
d(b)

d(11 . . . 1) + 1
=

b1 · 20 + b2 · 21 + · · ·+ bn · 2n−1

(2n − 1) + 1

=
b1 · 20

2n
+

b2 · 21

2n
+ · · ·+ bn · 2n−1

2n

f(b) = b1 · 2−n + b2 · 21−n + · · ·+ bn · 2−1. (2.2)

It’s not difficult to see that the bounds of (2.2) is [0, 1) for finite length bit strings.
In Matlab, I implemented the function bits to fractions(bits, n, bits per number)

(Appendix E) which converts a bit string into multiple fractions. This function iterates in a
chunk size of bits per number and converts each bit string into a fraction. This will be how I
can convert a very long column from Figure 2 into n different fractions.

2.3 Putting the pieces together for rand eca

I combined the last two sections to convert every column of Rule 30 ECA generations into
numbers between [0, 1).

Others have also extracted the ECA columns in the past. For example, when extracting
the middle column only, the middle column has been shown to be aperiodic and therefore good
for random number generation [1]. For rand eca, I instead extract every single column, not
just the middle column, to speed up the computation when producing large amounts of random
numbers.

The final function is called rand eca(rows, columns) (Appendix F) where you can generate
a matrix of shape rows by columns of random uniform values. In rand eca, I started from a
starting state of 512 zeros on the left, a single 1 in the middle, and 512 zeros on the right (in
total a 1025 cell row). I then warmed up the starting state by first iterating 512 times and taking
the last state as the new starting state. This warmup essentially turns the starting pyramid
(like in Figure 1) to completely populated (like in Figure 2). This warmup initialization is done
in the rng eca(offset) function (Appendix H), which is also how you reseed the rand eca for
reproducible results.

Within rand eca, I iterated enough ECA generations so that I could generate rows ·columns
amount of random numbers. I wanted a precision of 13 bits to correspond to a single random
number. This meant I needed to generate 13 · rows · columns bits in total, and that I needed to
iterate ⌈(13 ·rows ·columns)/1025⌉ generations (divided by 1025 because I extract every column
from 1025 cell wide ECA states). I also chunked over the number of iterations to drastically
save memory, but I’ll leave the reader to the Matlab calculations in Appendix G.

After iterating, I could simply apply the bits to fractions function over all the ECA
columns to generate the decimal numbers. Finally, the last state generated from rand eca

becomes the start state for the next function call later on. Again, please see Appendix F and
Appendix H for the exact implementation in Matlab.

To give you one example of running rand eca, I ran rand eca(100000, 1) to produce a
column vector with a hundred thousand random numbers as shown on the very right in Figure 3
in a histogram.

3 Test Compared to Random Uniform

Just to eye-ball how good rand eca is, I can plot a histogram of generated numbers and see
how well I approach a uniform distribution. In Figure 3, as I increase N generated numbers by
a factor of 10 each time, I approach what appears to be a uniform distribution.

3

Figure 3: As I increase the numbers generated N , rand eca approaches a uniform distribution.
Each histogram has 20 bins/bars and rand eca started from the same seed rng eca(0) each
time.

For a more rigorous test, I’ll use the χ2 test to evaluate whether rand eca samples from a
random uniform distribution. At large enough N = 105, given a null hypothesis that rand eca

for n = 20 bins has uniform counts at a α = 0.05 significance level, I computed χ2 with n−1 = 19
degrees of freedom.

First I computed the test using the observed bin counts Oi from rand eca compared to the
uniform expected bin counts (equal frequency) of E as

n∑
i=1

(Oi − E)2

E
(3.1)

where n is the total number of bins and i refers to the ith bin index. I implemented (3.1)
as the function chi squared critical value(data, bins) (Appendix I). And since (3.1) is
distributed like a χ2 distribution with n−1 degrees of freedom, at a significance level of α = 0.05,
I can compare (3.1) to the theoretical critical value of 30.143 (area to the right of 30.143 is 0.05).
If (3.1) is less than the critical value of 30.143, I will fail to reject the null hypothesis.

I observed that χ2
α=0.05,df=19 = 15.2434 with a p-value of 0.707 for rand eca at N = 105

generated numbers. Since the observed test is less than the theoretical critical value, I do indeed
fail to reject that rand eca is distributed from a random uniform distribution. To compute these
values I used the chi squared test(data, bins) function (Appendix L).

Just for reference, the built-in Matlab rand function which uses the Mersenne-Twister Al-
gorithm [2] (starting from rng(0) seed) for the same configuration above gets χ2

α=0.05,df=19 =
23.8466 with a p-value of 0.2021 which also passes the test, but is less evidence than the rand eca

function.
So for large enough N , I’ve shown that the rand eca function can be interpreted as a random

uniform distribution. Run the paper figures.mlx to reproduce these tests for yourself.

4 Sampling Other Distributions

The rand eca function can produce a uniform distribution, but cannot generate other important
distributions. For example, If I wanted to sample from a standard normal distribution, I would
have to symbolically invert the standard normal, then input my rand eca values.

Instead, I numerically approximated the inverse mapping from uniform to a target distri-
bution. Some example transformations are shown in Figure 4. I first started with a target
probability density function g, like the standard normal, and mapped the areas to a uniform
distribution.

To map the areas, I divided up the target g between a region [a, b] into n sections I’ll notate
as x1, x2, . . . , xn. Each rectangle then has a width of ∆x (just xi+1 − xi) and with a height of
g(xi). For all rectangles, I computed the areas per rectangle as ai = ∆x · g(xi). As the number
of rectangles increases, the sum of the areas should approach 1 for a sensible region [a, b].

4

https://github.com/xnought/rand-eca/blob/main/paper_figures.mlx

Figure 4: With N = 105 random numbers from rand eca, I mapped to other probability density
functions: two normal distributions mixed, exponential with λ = 1, and 1/(π(1 + x2)) for each
of the plots.

Figure 5: I can approximate the area (with rectangles) and map the areas back to uniform. As
I increase the number of rectangles, the mapping gets more precise.

Next, I divided up the uniform distribution into rectangles sized with areas ai. Since the
rand eca is between 0 and 1, I can simply divide up the x axis into accumulating ai as shown
in Figure 5 on the bottom left. Now, I can take my random uniform sample from rand eca,
and figure out which ith rectangle each value fell into. Then map each value directly onto the
corresponding ith target rectangle from g and use the xi from g as the transformed number (see
left Figure 5). As I increase the number of rectangular divisions, the mapping becomes more
accurate as shown on the right in Figure 5.

The uniform to pdf(uniform, pdf, a, b, num rectangles) function (Appendix M) maps
the vector of random numbers called uniform to be distributed like the given pdf function.
The approximation requires you to specify the bounds [a, b] of the pdf and the precision with
num rectangles. For example, If I wanted to sample random values from an exponential
distribution (λ = 1) for high precision, I can do uniform to pdf(rand eca(1e5, 1), @(x)

exp(-x), 0, 6, 10000) which produced the third plot in Figure 4.

5

5 Conclusion

In this paper, I have implemented a random uniform function called rand eca in Matlab by
iterating Elementary Cellular Automata Rule 30. I have also implemented a function called
uniform to pdf that transforms the uniform sampling to any other probability density function.

All the functions are open source at https://github.com/xnought/rand-eca. If you would
like to reproduce the figures and statistical tests from this paper, see the paper figures.mlx

file.

References

[1] Erica Jen. “Aperiodicity in one-dimensional cellular automata”. In: Physica D: Nonlinear
Phenomena 45.1-3 (1990), pp. 3–18.

[2] Makoto Matsumoto and Takuji Nishimura. “Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator”. In: ACM Transactions on Modeling
and Computer Simulation (TOMACS) 8.1 (1998), pp. 3–30.

[3] StephenWolfram. “Cellular automata as models of complexity”. In: Nature 311.5985 (1984),
pp. 419–424.

[4] Stephen Wolfram. “Statistical mechanics of cellular automata”. In: Reviews of modern
physics 55.3 (1983), p. 601.

[5] Stephen Wolfram and M Gad-el-Hak. “A new kind of science”. In: Appl. Mech. Rev. 56.2
(2003), B18–B19.

A rule30.m

1 function out_bit = rule30(vec3)

2 % Applies rule 30 to a certain corresponding 3 cell states

3 out_bit = xor(vec3 (1), or(vec3 (2), vec3 (3)));

4 end

B next state rule30.m

1 function next_state = next_state_rule30(current_state)

2 % Takes a 1D vector of size/shape (1, n)

3 % Produces a 1D vector of size/shape (1, n) with rule30

applied

4
5 n = length(current_state);

6 next_state = zeros(1, n);

7
8 % wrap around start

9 next_state (1) = rule30 ([current_state(end) current_state (1:2)

]);

10
11 % slide window over current state

12 for i=2:n-1

13 window_start = i-1; window_end = i+1; % window of 3 cells

to produce ith next state

14 next_state(i) = rule30(current_state(window_start:

window_end));

15 end

6

https://github.com/xnought/rand-eca
https://github.com/xnought/rand-eca/blob/main/paper_figures.mlx
https://github.com/xnought/rand-eca/blob/main/rule30.m
https://github.com/xnought/rand-eca/blob/main/next_state_rule30.m

16
17 % wrap around end

18 next_state(end) = rule30 ([current_state(end -1:end)

current_state (1)]);

19 end

C iterate rule30.m

1 function eca_generations = iterate_rule30(start_state ,

n_iterations)

2 % from the start_state sized (1, state_width), iterate with

rule30 n_iterations number of times

3 % returns an matrix (n_iterations , state_width) with

n_iterations past the start_state with rule30 applied to

each row

4
5 width = length(start_state);

6 eca_generations = zeros(n_iterations , width);

7
8 % generates next_state given previous_state starting with

provided start_state

9 current_state = start_state;

10 for i=1: n_iterations

11 current_state = next_state_rule30(current_state);

12 eca_generations(i, :) = current_state;

13 end

14 end

D visualize rule30.m

1 function visualize_rule30(start_state , n_iterations ,

visualize_from_i)

2 % Visualizes rule 30 in an image for n_iterations from the

given start_state

3 % only shows from offset to end

4
5 eca_generations = iterate_rule30(start_state , n_iterations);

6 % also include the start state in visualization

7 to_visualize = [start_state;

8 eca_generations];

9 % show 1s as black cells and 0s as white cells

10 invert_colors = not(to_visualize(visualize_from_i:end , :));

11 imshow(invert_colors , "InitialMagnification", 1000)

12 end

E bits to fractions.m

1 function decimal_fractions = bits_to_fractions(bits , n,

bits_per_number)

2 % converts a vector of bits sized into n decimal numbers

chunked over with bits_per_number precision

3

7

https://github.com/xnought/rand-eca/blob/main/iterate_rule30.m
https://github.com/xnought/rand-eca/blob/main/visualize_rule30.m
https://github.com/xnought/rand-eca/blob/main/bits_to_fractions.m

4 binary_fraction_powers = 2.^(-1:-1:- bits_per_number); % for

the binary to fraction conversion 2^{-1}, 2^{-2}, ...

5 decimal_fractions = zeros(1, n);

6 for i=1:n

7 % pick out chunk over bits by bits_per_number

8 end_bit_index = i*bits_per_number;

9 start_bit_index = end_bit_index - (bits_per_number - 1);

10 nbits = bits(start_bit_index:end_bit_index);

11 decimal_fractions(i) = sum(nbits .*

binary_fraction_powers);

12 end

13 end

F rand eca.m

1 function rand_nums = rand_eca(rows , columns)

2 % Computes random numbers uniformly [0, 1) using Elementary

Cellular Automata Rule 30

3 % you specifiy the size (rows , columns) of the matrix of

random numbers you get

4
5 % these values are set from rng_eca function

6 global seed

7 global bits_per_number

8 global upper_memory_limit

9
10 % initialize the seed if not found globally

11 if isempty(seed)

12 rng_eca (0); % initialize the seed value

13 end

14
15 % Iterate rule 30 to generate random numbers

16 n = rows*columns;

17 % Chunk over the timesteps instead of computing all at once

to save memory

18 [num_chunks , n_iterations_per_chunk , decimal_nums_per_chunk]

= compute_chunks(n, bits_per_number , length(seed),

upper_memory_limit);

19 rand_nums = zeros(num_chunks , decimal_nums_per_chunk);

20 for i=1: num_chunks

21 % Generate elementary cellular automata

22 eca_generations = iterate_rule30(seed ,

n_iterations_per_chunk);

23 seed = eca_generations(end , :); % update seed with last

ECA row

24
25 % Convert the generated columns into fractions [0, 1)

26 bits = reshape(eca_generations , 1, []);

27 bits_to_fractions(bits , decimal_nums_per_chunk ,

bits_per_number);

28 rand_nums(i, :) = bits_to_fractions(bits ,

decimal_nums_per_chunk , bits_per_number);

29 end

8

https://github.com/xnought/rand-eca/blob/main/rand_eca.m

30
31 % Return matrix with specified shape (rows , columns)

32 rand_nums = reshape(rand_nums , 1, []);

33 rand_nums = reshape(rand_nums (1:n), rows , columns);

34 end

G compute chunks.m

1 function [num_chunks , n_iterations_per_chunk ,

decimal_nums_per_chunk] = num_iterations(

total_numbers_to_generate , bits_per_number , seed_width ,

upper_memory_limit)

2 % IMPORTANT: iterate_rule30 () generates a (n_iterations ,

length(seed)) sized matrix

3 % so if you want to iterate

4 % put n_iterations into smaller chunks to limit memory use

for large n_iterations

5
6 % important high -level numbers

7 total_bits_to_generate = total_numbers_to_generate*

bits_per_number;

8 num_eca_columns = seed_width;

9
10 % ECA iterations and chunk size to limit memory consumptions

11 % column must be atelast of length bits_per_number , but can

be more

12 n_iterations = max(bits_per_number , ceil(

total_bits_to_generate/num_eca_columns));

13 % break up the n_iterations into smaller chunks

14 n_iterations_per_chunk = min(n_iterations , upper_memory_limit

);

15 num_chunks = ceil(n_iterations / n_iterations_per_chunk);

16 % the count of decimal random numbers we get per chunk

17 decimal_nums_per_chunk = ceil(total_numbers_to_generate /

num_chunks);

18 end

H rng eca.m

1 function rng_eca(offset)

2 % reseeds the rand_eca function for reproducability

3 % time_offset allows you to change the seed time_offset

iterations in the future

4
5 % a single black square in the middle surrounded by white

6 % there are seed_radius white cells on the left side then

another seed_radius number of white cells on the right

side

7 padding = 512;

8 start_state = [zeros(1, padding) 1 zeros(1, padding)];

9
10

9

https://github.com/xnought/rand-eca/blob/main/compute_chunks.m
https://github.com/xnought/rand-eca/blob/main/rng_eca.m

11 % when the start state goes past a certain number of

iterations (padding number of times),

12 % we get rid of the pyramid like pattern

13 warmup = padding + offset;

14 for i=1: warmup

15 start_state = next_state_rule30(start_state);

16 end

17
18 % exposed globally so the rand_eca can access these things

19 global seed

20 global bits_per_number % numerical precision

21 global upper_memory_limit

22
23 seed = start_state;

24 bits_per_number = 13;

25 % we store upper_memory_limit*length(seed) numbers at any

given time

26 % must be multiple of bits_per_number

27 upper_memory_limit = 32* bits_per_number;

28 end

I chi squared critical value.m

1 function critical_value = chi_squared_critical_value(data ,

num_bins)

2 N = length(data);

3
4 % count bin frequncies

5 bin_edges = (0: num_bins) ./ num_bins; % equally spaced

num_bins from 0 to 1

6 counts = count_bins(bin_edges , data);

7
8 % compare versus true uniform counts should be

9 uniform_per_bin_count = N / num_bins;

10 true_uniform = zeros(1, num_bins) + uniform_per_bin_count;

11 E = true_uniform;

12 O = counts;

13 % \sum_{i=1}^{ num_bins} (O_i - E_i)^2 / E_i is ~ \Chi^2_{df=

num_bins -1}

14 critical_value = sum((O - E).^2 ./ O);

15 end

J count bins.m

1 function counts = count_bins(bin_edges , data)

2 counts = zeros(1, length(bin_edges) - 1);

3 for i=1: length(data)

4 bin_loc = find_bin(bin_edges , data(i));

5 counts(bin_loc) = counts(bin_loc) + 1;

6 end

7 end

10

https://github.com/xnought/rand-eca/blob/main/chi_squared_critical_value.m
https://github.com/xnought/rand-eca/blob/main/count_bins.m

K find bin.m

1 function bin_loc = find_bin(bin_edges , number)

2 for i = 1:(length(bin_edges) -1)

3 % number fit within [bin_edge , bin_edge)

4 if (number >= bin_edges(i)) && (number < bin_edges(i

+1))

5 bin_loc = i;

6 break;

7 end

8 end

9 end

L chi squared test.m

1 function [observed_critical_value , theoretical_critical_value ,

p_value , passed_test] = chi_squared_test(data , bins)

2 observed_critical_value = chi_squared_critical_value(data ,

bins);

3 signficance_level = 0.05;

4 degrees_of_freedom = bins - 1;

5 theoretical_critical_value = chi2inv(1-signficance_level ,

degrees_of_freedom);

6 passed_test = observed_critical_value <

theoretical_critical_value;

7 p_value = chi2cdf(observed_critical_value , degrees_of_freedom

, "upper ");

8 end

M uniform to pdf.m

1 function [transformed , areas , target_xs , target_ys] =

uniform_to_pdf(uniform , pdf , a, b, num_rectangles)

2 % compute target mapping areas and what x they correspond to

3 dx = (b - a) / num_rectangles;

4 target_xs = a:dx:(b-dx); % rectangle start coordinate x_i

5 target_ys = pdf(target_xs); % pdf(x_i) or rectangle height

6 areas = dx .* target_ys; % rectangle widths times heights

7
8 % then map the random uniform to those xs from the pdf

9 % weighed by the pdf area for that rectangle

10 r = reshape(uniform , [], 1); % column vector

11 source_bins = cumsum(areas) ./ sum(areas); % the bins in the

uniform distrubtion sized by the pdf areas

12
13 % find what rectangle the uniform maps to in the pdf

14 target_rectangles_indexes = zeros(1, length(r));

15 for i=1: length(r)

16 a_i = find(r(i) < source_bins , 1);

17 if isempty(a_i)

18 target_rectangles_indexes(i) = length(source_bins); %

end bin

11

https://github.com/xnought/rand-eca/blob/main/find_bin.m
https://github.com/xnought/rand-eca/blob/main/chi_squared_test.m
https://github.com/xnought/rand-eca/blob/main/uniform_to_pdf.m

19 else

20 target_rectangles_indexes(i) = a_i;

21 end

22 end

23
24 transformed = reshape(target_xs(target_rectangles_indexes),

size(uniform)); % grab the pdf x_i coordinate from the

rectangles

25 end

12

