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Abstract—VQ-VAE EXPLAINER is a Vector-Quantized Vari-
ational Autoencoder (VQ-VAE) running live in the browser.
VQ-VAE EXPLAINER aims to explain how VQ-VAEs work
by connecting their implementation to interactive visuals. VQ-
VAE EXPLAINER first displays the main idea behind the VQ-
VAE in a summary view. Then, users can drill down into the
quantization implementation with code and matrix visualizations.
The VQ-VAE EXPLAINER site is live for anyone to use at
https://xnought.github.io/vq-vae-explainer/ and
the code is open source at https://github.com/xnought/
vq-vae-explainer/.

Index Terms—visualization, machine learning,

I. INTRODUCTION

Vector-Quantized Variational Autoencoders (VQ-VAEs) [1]
are a powerful variant of Autoencoders that have been used for
photo realistic image generation [2], self-driving compression
[3], 3D encoded protein sequences [4], and more! Although
conceptually simple, the VQ-VAE implementation is not as
simple to understand.

Luckily, existing explanations help people implement VQ-
VAEs (like Keras Code Examples [5]). These examples are
extremely valuable, but still do not adequately connect the
dense Python implementation to the high-level concepts.

We kill two birds with one stone by connecting the actual
model code to interactive visual explanation. VQ-VAE EX-
PLAINER specifically leverages the idea that interactive visu-
alizations are extremely effective at helping people learn ideas
in Machine Learning [6]–[10]. And while there are existing
Autoencoder and Variational Autoencoder (VAE) interactive
ML visualizations [11]–[13], there doesn’t exist any interactive
explanations for VQ-VAEs.

With VQ-VAE EXPLAINER we specifically visualize what
occurs in the hidden layer / latent space. As you can see
in Figure 1, a data input on the left ultimately is trained to
reconstruct the data output on the right. In this case MNIST
Digits [14] and specifically a hand draw “0” in Figure 1.

Within the hidden layer, we directly show the quantiazation
process. In Figure 1 where the cursor is, you can see the
continuous encoded features from the encoder. These continu-
ous vectors are converted to discrete representations as shown

with the colors in the middle of Figure 1. This quantization
process works by finding the closest codebook vector (discrete
code) and decoding those vectors into the output as shown in
Figure 1.

When the user understands the high-level summary, they can
click to view the implementation. We show the model code
first on the left in Figure 2. Each piece of code corresponds
to an operation between matrices. We show the data directly
with matrix shapes as shown in Figure 2. Specifically, we
display reshaping the features, finding each closest distance
to the codebook vectors, and selecting the vectors with the
closest distance.

To finish off this introduction, we present the following
contributions:

• Summary view: an interactive version of the original VQ-
VAE paper’s explanation figure (Section II). See Figure 1
for a preview.

• Details view: directly linking code to VQ-VAE operations
shown visually (Section III). See Figure 2 for a preview.

• Open source implementation1 and live website2 for any-
one with a browser to use (Section IV).

II. SUMMARY VIEW

The VQ-VAE EXPLAINER summary view directly adapts
the summary figure from the original VQ-VAE paper [1]
into a live interactive version. Let me explain the interactive
components in reference to Figure 1:

1) Left side (input): users can draw a digit and the model
will update in real-time and update the reconstruction
on the right.

2) The left grey cube (features): the encoded features from
a Convolutional Neural Network encoder. A user can
hover over the face of the cube to select a vector across
the filter dimension.

1Code: https://github.com/xnought/vq-vae-explainer/
2Site: https://xnought.github.io/vq-vae-explainer/
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Fig. 1. The VQ-VAE EXPLAINER summary view: input, quantization, and
reconstruction. A user can hover over data and see the mapping from features
to quantized. In this example, we hover over a feature vector which reveals
the closest embedding vector in purple (index of 2) which then acts as the
quantized code.

Fig. 2. The VQ-VAE EXPLAINER details view: model code visually linked
to live data and quantization steps. A user can hover over a matrix to show
vector mappings and highlight which piece of code it corresponds to.

3) The middle codebook (embeddings): the pool of discrete
indexes which each continuous feature vector snaps on
to (finds closest vector).

4) The middle matrix (idxs): the quantized codebook in-
dexes that corresponds to each feature vector’s closest
embedding. A user can hover to show the corresponding
vector quantization.

5) The right colored cube (quantized): uses the indexes
from the previous step to select out entire vectors from
the codebook and is input into the decoder. A user can
also hover over vectors here to show the full mapping.

III. DETAILS VIEW

Going beyond a summary, a user can click the “Reveal
more Vector Quantizer details” button as shown in Figure 2.
These lower-level details connect the actual model code to
data visualization.

We break up the quantization into a few steps: reshaping
the CNN features, finding distances to each embedding vector,
picking the index of the embedding with the closest distance,
using the index to grab embedding vectors, then reshaping
back to the CNN feature dimensions. Within Figure 2, the
purple matrix shows the reshape, the pink shows the distances

Fig. 3. The details view after drawing a “0” in the input (left) over time. See
how the middle data matrices change based on the input.

from each feature vector to each embedding vector where each
closest index is highlighted (argmin), the blue matrix shows
the embedding vector per closest code, and finally we reshape
back into a cube to be decoded. Each value within the matrices
are real numbers colored from negative (black) to positive
(white) normalized by each row.

Each step is directly linked to the actual code in the bottom
left Figure 2. When a user hovers over a line of code, the
corresponding matrix is highlighted with a grey box. When a
user hovers over a matrix, the code is highlighted with a grey
box. In other words, we link the code to the visualizations and
vice versa.

The intermediate data from the quantization operations
update in real-time. As shown in Figure 3, as a user draws the
digit “0,” the data in the matrices change which represents the
real data in the quantization process. Just with live interaction
a user can see how distances are computed and how discrete
codes are selected.

IV. IMPLEMENTATION

The VQ-VAE EXPLAINER interactive visualizations were
implemented in the browser with Svelte3. The model was
loaded with TensorflowJS [15]. We specifically trained the
Tensorflow/Keras [16], [17] model with code modified from
[5] in a notebook4. Then we exported the encoder and decoder

3https://svelte.dev/
4https://colab.research.google.com/drive/1Dt6ngF_

J50RUxfe7ZZYf-GBRORv7Husy
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as Tensorflow graph models and converted to the TensorflowJS
format. We exported the embedding matrix separately and
reimplemented the quantization step within JavaScript.

The VQ-VAE was specifically trained with the MNIST Dig-
its Train Dataset [14] (60k digits) and normalized between [0,
1]. The encoder was a Convolutional Neural Network and the
decoder was the opposite operations (Convolution Transposes).
The Quantization layer used an embedding dimension of 16
and had 20 embeddings in total. For training we used the
AdamW optimizer [18] with default parameters for 30 epochs,
a batch size 128, and a quantization beta β of 0.75.

V. CONCLUSION

We presented VQ-VAE EXPLAINER, an interactive way
to connect the VQ-VAE implementation to concrete
visualization. The code is open source at https:
//github.com/xnought/vq-vae-explainer
and the live demo is at https://xnought.github.io/
vq-vae-explainer/ for anyone to use.

In the future, it is worth deeply studying the idea of includ-
ing code directly in interactive explainables. Without the code,
one naturally asks if any existing interactive visualizations
actually help people implement and use the concepts they
learn.
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